110 research outputs found

    Violation of the Ikeda sum rule and the self-consistency in the renormalized quasiparticle random phase approximation and the nuclear double-beta decay

    Full text link
    The effect of the inclusion of ground state correlations into the QRPA equation of motion for the two-neutrino double beta (ββ2ν\beta\beta_{2\nu}) decay is carefully analyzed. The resulting model, called renormalized QRPA (RQRPA), does not collapse near the physical value of the nuclear force strength in the particle-particle channel, as happens with the ordinary QRPA. Still, the ββ2ν\beta\beta_{2\nu} transition amplitude is only slightly less sensitive on this parameter in the RQRPA than that in the plain QRPA. It is argued that this fact reveals once more that the characteristic behaviour of the ββ2ν\beta\beta_{2\nu} transition amplitude within the QRPA is not an artifact of the model, but a consequence of the partial restoration of the spin-isospin SU(4)SU(4) symmetry. It is shown that the price paid for bypassing the collapse in the RQRPA is the violation of the Ikeda sum rule.Comment: 16 pages, latex, 3 postscript figure

    Proton-neutron self-consistent quasiparticle random phase approximation within the o(5) model

    Get PDF
    15 págs.; 7 figs.; 1 tab.; 1 app. ; PACS number(s): 21.60.Jz, 23.40.Hc, 23.90.1wThe self-consistent quasiparticle random phase approximation (SCQRPA) within the O(5) model in the coupled proton-neutron representation is analyzed. The exact vacuum wave function is used to compute all involved matrix elements. A stability analysis of the stationary points is performed. A phase transition from the uncoupled to the coupled stable proton-neutron regime beyond the QRPA breakdown value of the particle-particle strength is evidenced. The excitation energies are close to the lowest stable exact eigenvalues given by the diagonalization procedure for all cases. The conditions for which the Ikeda sum rule is fulfilled for all values of the particle-particle strength are pointed out. ©2000 American Physical SocietyOne of us (D.S.D.) is grateful for the financial support given by CNRS during his stay in Grenoble, where the work was performed.Peer Reviewe

    Self-consistent random phase approximation within the O(5) model and Fermi transitions

    Get PDF
    Self-consistent quasiparticle random phase approximation (SCQRPA) is considered in application to the Fermi transitions within the O(5) model. It is demonstrated that SCQRPA improves on renormalized QRPA (RQRPA), a method that has recently become rather popular in this context. The analytical form of the SCQRPA vacuum is used to evaluate all the matrix elements. The SCQRPA results show a general trend similar to the exact solutions. The necessity to change the single particle basis beyond the transition point, and to include the proton-proton and neutron-neutron channels in the QRPA operator, in addition to the proton-neutron one, is pointed out.Facultad de Ciencias Exacta

    Majoron emitting neutrinoless double beta decay in the electroweak chiral gauge extensions

    Full text link
    Fundamental mechanisms for Majoron emitting neutrinoless double beta decay in SU(3)_C x G_W x U(1) models, for electroweak flavor chiral extensions, G_W = SU(3)_L and SU(4)_L are pointed out. Both kinds of known Majoron emitting processes, charged Majoron emitting where the massless Nambu-Goldstone boson itself carries lepton charge, L=2L=-2, and the ordinary Majoron emitting where the boson has a small mass are found possible. PACS numbers: 11.15.Ex, 12.60.Fr, 14.80.CpComment: 18 pages, Revtex, 3 Postscript figures. To be published in Phys.Rev.D(1 May 1998

    Innate immunity defines the capacity of antiviral T cells to limit persistent infection

    Get PDF
    Effective immunity requires the coordinated activation of innate and adaptive immune responses. Natural killer (NK) cells are central innate immune effectors, but can also affect the generation of acquired immune responses to viruses and malignancies. How NK cells influence the efficacy of adaptive immunity, however, is poorly understood. Here, we show that NK cells negatively regulate the duration and effectiveness of virus-specific CD4+ and CD8+ T cell responses by limiting exposure of T cells to infected antigen-presenting cells. This impacts the quality of T cell responses and the ability to limit viral persistence. Our studies provide unexpected insights into novel interplays between innate and adaptive immune effectors, and define the critical requirements for efficient control of viral persistence

    Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands

    Get PDF
    Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence
    corecore