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The self-consistent quasiparticle random phase approximation~SCQRPA! within the O~5! model in the
coupled proton-neutron representation is analyzed. The exact vacuum wave function is used to compute all
involved matrix elements. A stability analysis of the stationary points is performed. A phase transition from the
uncoupled to the coupled stable proton-neutron regime beyond the QRPA breakdown value of the particle-
particle strength is evidenced. The excitation energies are close to the lowest stable exact eigenvalues given by
the diagonalization procedure for all cases. The conditions for which the Ikeda sum rule is fulfilled for all
values of the particle-particle strength are pointed out.

PACS number~s!: 21.60.Jz, 23.40.Hc, 23.90.1w
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I. INTRODUCTION

The renormalized quasiparticle random phase approxi
tion ~r-QRPA! became an important theoretical tool to inve
tigate collective excitations in superfluid nuclei. In the la
decade special attention was focused on applying
method to analyze the proton-neutron (pn) interaction in-
volved in beta and double beta decay processes@1#. Al-
though the beta decay transition is modeled by a parti
hole ~p-h! operator, the important role of the particle-partic
~p-p! channel in explaining the suppression of the tw
neutrino double beta decay rate was evidenced by stan
QRPA calculations@2#. Unfortunately the QRPA become
unstable for physical values of the p-p interaction and t
effect is connected with the overestimation of the grou
state~g.s.! correlations. The r-QRPA accounts for g.s. cor
lation effects and is able to go a short distance beyond
transition point in a more or less reliable way@3–12#. The
so-called self-consistent QRPA~SCQRPA! @13–17# ac-
counts fully for the RPA ground state correlations and i
proves on the r-QRPA.

The importance of thepn correlations in the Gamow
Teller double beta decay process was intensively inve
gated in the last decade@18,19# and recently a critical analy
sis was performed in Ref.@20#. The pn Hamiltonian can be
diagonalized using different approximations. We ment
here the most important methods: the use of a coupledpn
trial wave function@21#, thea-like representation of the qua
siparticle as a creation proton operator plus the produc
one neutron and two proton anihillation operators@22#, and
finally the most popular approach consisting in the gene
0556-2813/2000/62~4!/044311~15!/$15.00 62 0443
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ized pn Bogoliubov transformation among one or mo
shells@23,24#. For a review of the properties and applicatio
of this last transformation see, for instance, Ref.@25#. In
order to test the accuracy of the different approximate me
ods several schematicpn Hamiltonians were investigate
@26–29#.

In a recent paper@30# we made an analysis of the Ferm
beta decay transitions in the O~5! model, using the exac
SCQRPA vacuum wave function. As usual neutron-neut
(nn) and proton-proton (pp) pairing was assumed. The co
respondingu andv amplitudes were obtained from the min
mization of the SCQRPA ground state energy. Excitat
energies and transition probabilities were obtained for val
of the p-p interaction strength which are well above the po
where standard QRPA breaks down. However, quantita
agreement with the results from exact diagonalization w
rapidly degraded beyond the transition point. It is in fact w
known from our studies with other models@15# that even
with the SCRPA one has to change the single particle b
beyond the point where the standard RPA or, as in our c
the standard QRPA breaks down, which is where the fi
excited state becomes degenerate with the ground s
Since the RPA correlations which drive the system to
instability are, in the present context,pn pair correlations, it
is natural to augment the standard quasiparticle transfor
tion to include mixing of proton and neutron states. We w
show that in this new quasiparticle basis the standard QR
has a physical branch beyond the transition point which c
tinuously joins with thepn uncoupled regime. We will ex-
tend the QRPA to the SCQRPA or r-QRPA and study ex
tation energies and transition probabilities in the reg
©2000 The American Physical Society11-1



te

re
st
A

as
th

ai

ng

th
c
.
t
a

ra
th
r t
ne
P

n-

a-

e
i

rin
ga

n
in
om
e
o
C
A
de
a

e-

lts.

d.
tor
se

he
sta-
e

-
re-

be

od-

iven

p-

D. S. DELION et al. PHYSICAL REVIEW C 62 044311
around and beyond the transition point.
The use of a quasiparticle basis includingpn mixing is, of

course, not new and has also been applied within the con
of double beta decay in a series of works@18,19# using the
standard QRPA. However, in these latter works only the
gion before and up to the transition point has been inve
gated. We therefore will apply for the first time the r-QRP
and SCQRPA in this context using this more general qu
particle transformation and investigate the region beyond
transition point in a more systematic way. This is the m
purpose of the present work.

In detail our paper is organized according to the followi
plan. In Sec. II is presented thepn basis; in Sec. III is de-
rived the self-consistent system of BCS equations, and
stability analysis of different solutions is performed. In Se
IV the SCQRPA procedure is briefly described and in Sec
the Ikeda sum rule is analyzed. Section VI is devoted
some representative numerical examples. Conclusions
drawn in the last section.

II. EXTENDED QUASIPARTICLE BASIS

Though the mixing of protons and neutrons in a gene
ized quasiparticle transformation is well documented in
literature@25# we here repeat the essential steps in orde
make our paper self-contained and also to be able to con
this extended transformation to our more general SCQR
~r-QRPA! approach.

Let us consider a spherical two-levelpn system with the
same spinj. The general Bogoliubov transformation, co
necting the particlectk

† (t5p,n) with the quasiparticle
bmk

† (m51,2) representation, is given by the following rel
tion @24#:

S cpk
†

cnk
†

cpk̄sk

cnk̄sk

D 5S u1p u2p v1p v2p

u1n u2n v1n v2n

2v1p 2v2p u1p u2p

2v1n 2v2n u1n u2n

D S b1k
†

b2k
†

b1k̄sk

b2k̄sk

D ,

~2.1!

wherek is the spin projection andsk[(2) j 2k. This trans-
formation mixes the proton with neutron states. In the cas
complex amplitudes one can simultaneously analyze the
ovector (T51) and isoscalar (T50) modes.

The interplay between the isoscalar and isovector pai
interactions is presently an important subject of investi
tion. The effect should be very important especially forZ
;N nuclei. In Ref.@31# a realistic shell model calculation i
the p f shell evidenced a dominance of the isovector pair
in the ground state and the importance of the isoscalar c
ponent with increasing excitation energy. Recently in R
@32# an analysis of the interplay between isovector and is
calar components within the proton-neutron coupled B
approach for aN5Z single level system was performed.
solution with a nonvanishing isoscalar gap was found,
pending on the ratio between the isovector and isoscalar p
ing strengths. A similar analysis, but within the O~8! model,
is given by Ref.@33#. There the exact diagonalization proc
04431
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The important role played by the isoscalar term inb1 tran-
sition and therefore in the doubleb decay process is stresse

In our analysis we will restrict ourselves to the isovec
pairing interaction in order to investigate in the simplest ca
the idea that the changing to a ‘‘deformed’’ basis in t
isospin space is the essential ingredient in restoring the
bility of the system beyond the critical point. Therefore w
will consider only real amplitudes in Eq.~2.1!. A future in-
clusion of the isoscalar interaction within the O~8! model of
Ref. @33# will of course improve our analysis. However, iso
scalar pairing in any case can only be important and the
fore influences the double beta decay forN;Z nuclei.

A useful representation of the BCS amplitudes can
written in terms of the trigonometric functions@23#. It auto-
matically satisfies the orthonormality relations and is a pr
uct of three rotations:

S u1p u2p v1p v2p

u1n u2n v1n v2n

2v1p 2v2p u1p u2p

2v1n 2v2n u1n u2n

D
5S cosc sinc 0 0

2sinc cosc 0 0

0 0 cosc sinc

0 0 2sinc cosc
D

3S cosa 0 sina 0

0 cosb 0 sinb

2sina 0 cosa 0

0 2sinb 0 cosb

D
3S cosf sinf 0 0

2sinf cosf 0 0

0 0 cosf sinf

0 0 2sinf cosf

D .

~2.2!

This transformation has four independent parameters g
by the angles characterizing the BCS amplitudes:a,b con-
necting the same kind of particles andc,f which mixes the
proton with the neutron states.

Let us introduce the number of particles and pairing o
erators in the particle representation,

Nt1t2
5ct1k

† ct2k , t i5p,n,

Pt1t2

† 5ct1k
† ct2k̄

†
sk , ~2.3!

and similar operators in the quasiparticle representation,

Ni j 5bik
1bjk , i , j 51,2
1-2
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TABLE I. The coefficients of the operators entering the Hamiltonian~2.7! in the quasiparticle represen

tation given by Eq.~2.9!. d̄i j 5di j /(11d i j )5A2V/(11d i j ).

g Tg
† xi j

g yi j
g zi j

g wg gg

1 Np uipujp2v ipv jp (uipv jp1ujpv ip)d̄i j (v ipujp1v jpuip)d̄i j
2Vrpp 0

2 Nn uinujn2v inv jn (uinv jn1ujnv in)d̄i j (v inujn1v jnuin)d̄i j
2Vrnn 0

3 Npn uipujn2v inv jp (uipv jn1ujpv in)d̄i j (v ipujn1v jpuin)d̄i j
2Vrpn Fpn /4

4 Nnp uinujp2v ipv jn (uinv jp1ujnv ip)d̄i j (v inujp1v jnuip)d̄i j
2Vrnp Fpn /4

5 Pp
† 2(uipv jp1uipv jp) (uipujp1ujpuip)d̄i j 2(v ipv jp1v jpv ip)d̄i j

2Vxpp 2Gp /4

6 Pn
† 2(uinv jn1uinv jn) (uinujn1ujnuin)d̄i j 2(v inv jn1v jnv in)d̄i j

2Vxnn 2Gn /4

7 Ppn
† 2(uipv jn1uinv jp) (uipujn1ujpuin)d̄i j 2(v ipv jn1v jpv in)d̄i j

2Vxpn 2Gpn /4

8 Pnp
† 2(uinv jp1uipv jn) (uinujp1ujnuip)d̄i j 2(v inv jp1v jnv ip)d̄i j

2Vxnp 2Gpn /4
op
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P̃i j
† 5bik

† bjk̄
†

sk5P̃j i
† . ~2.4!

Let us also introduce the normalized quasiparticle pair
erators

P i j
† 5

P̃i j
†

di j
; di j 5A2V~11d i j !, ~2.5!

whereV5 j 1 1
2 . These operators satisfy the usual commu

tion relations within the O~5! algebra@26#. The commutators
can be symbolically written as

@Pi j ,P kl
† #5d i j ,kl2ai jkl

mn Nmn ,

@Ni j ,P kl
† #5bi jkl

mn P mn
† ,

@Pi j ,Nkl#5ci jkl
mn Pmn , ci jkl

mn 5blki j
mn , ~2.6!

where summation over the repeated labels is underst
This symbolic way to consider the commutation relatio
will help us to derive different relations in a more compa
form.

We will use in our analysis the same Hamiltonian as
Refs.@16,30#,

H5epNp1enNn1
Fpn

4
~NpnNnp1NnpNpn!

2
Gp

4
Pp

†Pp2
Gn

4
Pn

†Pn2
Gpn

4
~Ppn

† Pnp1Pnp
† Ppn!

[edTd
†1ggTg

†Tg , ~2.7!

whered51,2 andg53 – 8 and

ep5ep2lp , en5en2ln . ~2.8!

Hereet denotes the single particle energies andlt Lagrange
multipliers accounting for the number of particles conser
tion law. This Hamiltonian contains in addition to the proto
and neutron pairing terms a p-h interaction with strengthFpn
and a p-p part with strengthGpn , which actually is thepn
pairing interaction. This schematic Hamiltonian is approp
ate to simulate the important features of the monop
04431
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~Fermi! beta decay process. Thepn quasiparticle representa
tion of a one-body operator can be written as

Tg
†5xi j

g Ni j 1yi j
g P i j

† 1zi j
g Pi j 1wg, ~2.9!

where the summation forNi j operators is over (i , j )
5(1,1),(2,2),(1,2),(2,1) and forPi j operators over (i , j )
5(1,1),(2,2),(1,2) indices. Here the indexg corresponds to
a concrete operator as in Table I.

For the normal and pairing densities, respectively,

rt1t2
5v i t1

v i t2
,

xt1t2
5v i t1

ui t2
, ~2.10!

by using the trigonometric representation of the BCS am
tudes~2.2!, one obtains the following relations:

rpp5sin2 a cos2 f1sin2 b sin2 f,

rnn5sin2 a sin2 f1sin2 b cos2 f,

rpn5sin 2f~sin2 a2sin2 b!/2,

xpp5~sin 2a cos2 f1sin 2b sin2 f!/2,

xnn5~sin 2a sin2 f1sin 2b cos2 f!/2,

xpn5sin 2f~sin 2a2sin 2b!/4. ~2.11!

The Hamiltonian written in the quasiparticle representat
takes the standard form

H5H001H111H201H311H221H40, ~2.12!

where the differentHi j terms are given by

H005edwd1gg~wgwg1zmn
g zmn

g !, ~2.13!

H115EmnNmn ,

H205~edzmn
d 1hmn

20 !~P mn
† 1Pmn!,

H315hmnkl
31 ~P mn

† Nlk1NklPmn!,
1-3
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H225hmnkl
22 P mn

† Pkl1gmnkl
22 @NmnNkl2dnkNml#,

H405hmnkl
40 ~P mn

† P kl
† 1PmnPkl!.

The quasiparticle energiesEmn are defined as the coefficien
of Nmn :

Emn5edxmn
d 1gg@wg~xmn

g 1xnm
g !2zi j

g zkl
g ai jkl

mn #1gmkkn
22 .

~2.14!

The other notation in Eqs.~2.13! is defined as follows:

hmn
20 5gg@wg~ymn

g 1zmn
g !1zi j

g xkl
g bkli j

mn #,

hmnkl
31 5gg~ymn

g xkl
g 1zmn

g xlk
g !,

hmnkl
22 5gg~ymn

g ykl
g 1zmn

g zkl
g !,

gmnkl
22 5ggxmn

g xlk
g ,

hmnkl
40 5ggymn

g zkl
g , ~2.15!

where the summation on the subscript indices is taken o
(1,1),(2,2),(1,2) iny,z and over (1,1),(2,2),(1,2),(2,1) in
E,x coefficients.

The expectation value of the Hamiltonian on the stand
BCS wave function takes the following form in terms
densities:

H0052Vep8rpp12Ven8rnn2Gp~Vxpp!
22Gn~Vxnn!

2

22Gpn8 ~Vxpn!
212Fpn8 ~Vrpn!

2, ~2.16!

where the renormalized prime energies and strengths are
fined by

ep85ep2
Gp

2
rpp1

Fpn

4
2

Gpn1Fpn

4
rnn ,

en85en2
Gn

2
rnn1

Fpn

4
2

Gpn1Fpn

4
rpp ,

Gpn8 5Gpn2
1

2V
Fpn ,

Fpn8 5Fpn2
1

2V
Gpn . ~2.17!

III. SELF-CONSISTENT BCS EQUATIONS

The generalized BCS equations within the SCQR
scheme are derived from the extremum conditiond^H&50
@34#, i.e.,

^@H,P ab
† #&5^@H201H31,P ab

† #&50,

~a,b!5~1,1!,~2,2!,~1,2!. ~3.1!

Using the Hamiltonian written in the quasiparticle repres
tation ~2.13! one obtains
04431
er

d
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-

~zab
d 2zmn

d amnab
rs ^Nrs&!ed1hab

202hmn
20 amnab

rs ^Nrs&

1habkl
31 ^Nkl&1hmnkl

31 ~2amnab
rs ^NklNrs&

1blkab
rs ^P mn

† P rs
† &1bklab

rs ^P rs
† Pmn&!50, ~3.2!

where the expectation value of an operatorT on the
SCQRPA vacuumuRPA& is defined as

^T&[
^RPAuTuRPA&

^RPAuRPA&
. ~3.3!

The system given by Eq.~3.2! can be seen as a system
three linear equations for two unknownse1 ande2:

Da1e11Da2e21Da350, a[~a,b!. ~3.4!

In order to have a solution of this system it is necessary
fulfill the usual compatibility condition

det~D !50. ~3.5!

The number of particles equations are obtained by using
expectation values of theNp ,Nn operators on the vacuum
@16,30#:

Z5w11xi j
1 ^Ni j &

52V~v1p
2 1v2p

2 !1~u1p
2 2v1p

2 !^N11&1~u2p
2 2v2p

2 !^N22&

1~u1pu2p2v1pv2p!~^N121N21&!,

N5w21xi j
2 ^Ni j &

52V~v1n
2 1v2n

2 !1~u1n
2 2v1n

2 !^N11&1~u2n
2 2v2n

2 !^N22&

1~u1nu2n2v1nv2n!~^N121N21&!. ~3.6!

If the expectation value in Eq.~3.1! is taken over the stan
dard BCS vacuumuBCS& all matrix elements~me’s! of theN
andP operators vanish and one obtains the usual pn sys
of equations@24# in which only the first two terms in Eq
~3.2! have contribution. However, Eqs.~3.2! and ~3.6! are
also valid for a more general vacuum, as we will show b
low. The standard BCS system of equations~3.2! can be
written as

ep9~vapubp1uapvbp!1en9~vanubp1uanvbp!

1Gpn~vapubn1uapvpn!1Gpn~vanubp1uanvbp!

2Dpp~uapubp2vapvap!2Dnn~uanubn2vanvan!

2Dpn~uapubn2vanvbp!2Dpn~uanubp2vapvbn!50,

~3.7!

where the following notation was introduced:
1-4
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ep95ep2Gprpp1
Fpn

4
2

Gpn1Fpn

2
rnn ,

en95en2Gnrnn1
Fpn

4
2

Gpn1Fpn

2
rpp ,

Gpn5Fpn8 Vrpn ,
~3.8!

Dpn5Gpn8 Vxpn ,

Dpp5GpVxpp ,

Dnn5GpVxnn .

In this case the quasiparticle energies defined by Eq.~2.14!
are automatically diagonal.

First of all let us discuss which are the possible case
have solutions for the system~3.7!. We will generalize the
analysis performed in Ref.@23# to the Hamiltonian~2.7!,
containing arbitrary p-h and p-p terms. By using the trigon
metric representation of the amplitudes~2.2! and also by
adding and substracting Eqs.~3.7! with (a,b)5(1,1),(2,2)
one obtains the following system of equations:

~epa1enb!cos2 f1~ena1epb!sin2 f1~Ga2Gb!sin 2f50,

@~epa2enb!cos2 f1~ena2epb!sin2 f1~Ga1Gb!sin 2f#

3cos 2c1@2eabsin 2f12Gab cos 2f#sin 2c50,

~3.9!

~epa2enb!cos2 f1~ena2epb!sin2 f

1~Ga1Gb!sin 2f]sin 2c

2@2eab sin 2f12Gab cos 2f#cos 2c50,

where we introduced the notation
e

04431
to

-

eta5et9 sin 2a2Dtt cos 2a, t5p,n, ~3.10!

etb5et9 sin 2b2Dtt cos 2b,

eab5~ep92en9!sin~a1b!2~Dpp2Dnn!cos~a1b!,

Ga5Gpn sin 2a2Dpn cos 2a,

Gb5Gpn sin 2b2Dpn cos 2b,

Gab5Gpn sin~a1b!2Dpn cos~a1b!.

The last two equations~3.9! can be seen as a homogeneo
linear system in sinc,cosc. One can obtain a nontrivial so
lution if the determinant of the coefficients vanishes; the
fore the square brackets in Eq.~3.9! are separately vanishing
Finally the system of BCS equations does not depend on
variable c, which is consistent with the fact that the tot
energy~2.16! is also not dependent on this angle. By taki
again the sum and difference of the first two equations
obtains

epa cos2 f1ena sin2 f1Ga sin 2f50,

enb cos2 f1epb sin2 f2Gb sin 2f50,

eab sin 2f22Gab cos 2f50. ~3.11!

This system of equations is equivalent to the system of
tionary conditions

]H00

]a
5

]H00

]b
5

]H00

]f
50. ~3.12!

It can be seen as a system of three linear equations of
type ~3.4! for the unknownsep9 ,en9 @or lp ,ln according to
Eq. ~2.8!#. In order to have nontrivial solutions it is necessa
to fulfill the condition ~3.5!; i.e., the determinant of the ma
trix
D~a,b,f!5S cos2 f sin 2a sin2 f sin 2a 2~Dpp cos2 f1Dnn sin2 f!cos 2a1Ga sin 2f

sin2 f sin 2b cos2 f sin 2b 2~Dpp sin2 f1Dnn cos2 f!cos 2b2Gb sin 2f

sin 2f sin~a1b! 2sin 2f sin~a1b! 2~Dpp2Dnn!sin 2f cos~a1b!22Gab cos 2f
D ~3.13!
m
:

n
s
s

should vanish:

detD~a,b,f!50. ~3.14!

The anglesa and b are fixed by the number of particl
conditions~3.6!, which take the following form:

sin2 a cos2 f1sin2 b sin2 f5
Z

2V
,

sin2 a sin2 f1sin2 b cos2 f5
N

2V
. ~3.15!
Let us first consider the caseN5Z which is of interest for
proton-rich nuclei@35#. There are two kinds of solutions.

~a1! The compatibility condition~3.14! is fulfilled for a
52b, f50,p/2. This corresponds to an uncoupled syste
of BCS equations for protons and neutrons, respectively

epa5enb50. ~3.16!

~a2! One can also satisfy the compatibility conditio
~3.14! for a52b, f5p/4, a situation in which one ha
Dpp5Dnn5Gpn50 andDpnÞ0; therefore a quasiparticle i
a superposition of a proton and a neutron particle state.
1-5
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FIG. 1. ~a! The anglesa ~solid line!, b ~dotted line!, andf ~dashed line! defined by Eq.~2.2! fulfilling the BCS compatibility condition
defined by Eq.~3.14! versus the ratioGpn /Gp for the unstable regime. The parameters of the Hamitonian given by Eq.~2.7! areGp5Gn

50.2, Fpn50, andV56, Z54, N56. ~b! The same as in~a!, but for the stable regime.~c! The same as in~b!, but for Fpn /Gp52.
le
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We will show in the next section that the solutions~a1!
and ~a2! are stable against QRPA oscillations for comp
mentary intervals of theGpn strength divided by a critica
valueGcrt . Solution~a1! is stable forGpn,Gcrt and~a2! for
Gpn.Gcrt .

The caseNÞZ is important for the beta decay transition
There are also two kinds of solutions.

~b1! The compatibility equation~3.14! as in the previous
case has as solutionsf50,p/2 and corresponds to an un
coupled system BCS equation for protons and neutrons
spectively. These solutions are stable for values of
particle-particle strengthGpn,Gcrt .

~b2! There is an important class of solutions withfÞ0,
c50, corresponding to a coupledpn system. Let us con-
sider the following set of parameters:Gp5Gn50.2, Fpn
50. In Fig. 1~a! are shown the anglesa ~solid line!, b
~dotted line!, andf ~dashed line! for which the compatibility
04431
-

e-
e

condition detD(Z,N,f)50 is fulfilled. There are two re-
gions for which one has

~1! Gpn,Gcrt , b,0,

~2! Gpn.Gcrt , b.0.

These solutions are unstable with respect to the QRPA o
lations.

If the condition

~3! Gpn.Gcrt , b,0

is fulfilled, as is shown in Fig. 1~b!, then the solution be-
comes stable. Therefore the sign of the angleb, given as a
square root according to Eq.~3.15!, together with the value
of the Gpn strength determines the stability regime of t
solution.
1-6
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From Fig. 1~a! one can see that forGpn5Gcrt the anglea
vanishes. This critical case can be analytically analyz
From Eq.~3.15! one obtains

sin2 b5
Z1N

2V
, sin2 f5

Z

Z1N
, cos2 f5

N

Z1N
.

~3.17!

The determinant of the matrixD(Z,N,f) can easily be
evaluated,

detD~Z,N,f!5S 12
Z1N

2V D ~Gp1Gn22Gpn8 !

3A2

VS ZN

Z1ND 3/2

, ~3.18!

and one obtains a vanishing value for two cases:

~a! Z1N52V,

~b! Gpn8 5~Gp1Gn!/2.

Case~b! is that given in Fig. 1~a!. This value of the renor-
malized strengthGpn8 is practically the critical valueGcrt . A
similar conclusion for this particular case was drawn in R
@36#.

The stability regime of the BCS solutions is connect
with the exact exitation energy, given by the difference b
tween the eigenvalues of the (Z11,N21) and (Z,N) sys-
tems, respectively. By increasing theGpn strength this en-
ergy difference of ground states changes its sign from plu
minus for Gpn5Gcrt , i.e., from a stable to an unstable r
gime.

For nonvanishing values of the p-h strengthFpn.0 the
situation remains qualitatively unchanged but the valueGcrt
is shifted to the right. This can be seen in Fig. 1~c!, where the
anglesa,b,f fulfilling the compatibility condition~3.14! for
Fpn /Gp52 are plotted.
04431
d.
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If one considers the SCQRPA vacuum, to be introduc
below in the generalized BCS equation~3.2!, the expectation
values of the quasiparticle operatorsN,P have nonvanishing
contributions and, according to our calculations, the conc
sions remain qualitatively unchanged; i.e., the compatibi
condition ~3.5! for a stable coupledpn solution is also ful-
filled for Gpn.Gcrt , b,0.

This concludes our study of the standard BCS solution
the Hamiltonian~2.12! whenpn(T51) pairing is considered
simultaneously with thepp andnn pairing.

Let us now come to the proper subject of this pap
namely, the study of extended RPA equations in this n
quasiparticle basis introduced above.

IV. SELF-CONSISTENT QRPA EQUATIONS

The extension of the RPA approach to include grou
state correlations in a systematic way and which we ca
the self-consistent RPA~SCRPA! in the past@also called the
cluster Hartree-Fock~CHF! approximation by other authors#
seems to be a very powerful method to account for stro
correlations in a Fermi system. These extensions have
now a quite long history and go back to Hara@37# who
introduced already a renormalized RPA which can be c
sidered as an approximation to the SCRPA. Later the ide
consistently accounting for ground state correlations in
RPA was much elaborated by Rowe@38#. More recently two
of the present authors contributed more insight into
whole method in a series of papers@14,17#. Quite promising
success for various models was achieved. The most rele
for our study here is the investigation with the SCRPA o
multilevel pairing model@39#. Naturally the SCRPA can also
be extended to the superfluid case which we call
SCQRPA.

The SCRPA and SCQRPA can be derived from a va
tional principle. To this purpose we define the functional
an average excitation energy@34#
Em5
(nk$~En2E0!u^0uXk

mP k
†un&u22~En2E0!u^0uYk

mP kun&u2%

(nk$u^0uXk
mP k

†un&u22u^0uYk
mP k

†un&u2%
, ~4.1!
ni-
whereu0& and un& are the ground and excited states and

P 11
† [P 1

† , P 22
† [P 2

† , P 12
† [P 3

† . ~4.2!

Minimization of Em with respect toXk
m ,Yk

m leads to

^0u†dG,@H,Gn
†#‡u0&5vn^0u@dG,Gn

†u0&, ~4.3!

where

Gn
†5P k

†Xkn2PkYkn ~4.4!
anddG is a variation~with respect toX,Y) of G. It can also
be shown that Eq.~4.3! is consistent with the condition

Gnu0&[GnuRPA&50; ~4.5!

that is, the ground state is the vacuum of the vibration an
hilation operatorsGn . More explicitly the SCQRPA equation
~4.3! is written as

S A B
B AD S X

YD 5S C 0

0 2CD S X

YDv, ~4.6!
1-7
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wherev is the diagonal matrix of the SCQRPA eigenvalu
andC the metric matrix:

Ci j 5^@Pi ,P j
†#&5d i j 2ai j

k ^Nk&, i , j 51,2,3. ~4.7!

In the Appendix are given the detailed forms of t
SCQRPA matrix elements. Equations~4.3!–~4.6! constitute
in principle the SCQRPA equations. In the case when
~4.5! can be explicitly solved for the ground stateuRPA&
~see, e.g.,@42#!, one can calculate the matrix elementsA,B,C
as a function ofX,Y and find the solution of Eq.~4.6!. Re-
placing in the evaluation ofA,B,C the SCQRPA ground
state by the BCS vacuum leads to the standard QRPA
general it is very difficult to obtain the ground state from E
~4.5!. In cases where it is not available,A,B,C can still be
evaluated to a large extent making use of condition~4.5!.
Not all the elements ofA,B,C can, however, be determine
in this way and in general one has to apply some appr
mation.

It is also possible to include a fourth component in t
basis

P 4
†5N12[N3 ~4.8!

and the diagonal metric matrix becomes

Ci j 5d i j S 12
^Ni&
V D , i , j 51,2,

C33512
^N11N2&

2V
,

C445^N12N2&. ~4.9!

We will shortly recall the procedure to solve th
SCQRPA equations in the most general case of a nondi
nal metric matrix. In order to solve the eigenvalue proble
one first diagonalizes the metric matrix

CZ5Zm, ZZ†5Z†Z5I , ~4.10!

wherem is the diagonal eigenvalue metric matrix. By intr
ducing the normalized eigenvectors

S X̄

Ȳ
D 5SS X

YD ~4.11!

and normalized matrices

S Ā
B̄ D 5~S21!†S A

B DS21, ~4.12!

where

S5m1/2Z†, S215Zm21/2, ~4.13!

one obtains the SCQRPA system of equations in the s
form as for the standard QRPA case:
04431
.
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S Ā B̄
B̄ ĀD S X̄

Ȳ
D 5S I 0

0 2I D S X̄

Ȳ
D v. ~4.14!

In this way by introducing the vectorP †5(P k
†), k

51,2,3,4, the SCQRPA phonon can be written as

G†5P †X2PY5P †S21X̄2PS21Ȳ[P̄†X̄2PY,
~4.15!

where the normalized operators

P̄†5P †S21 ~4.16!

can be inverted:

P̄†5G†X̄†1GȲ†. ~4.17!

With this inversion formula and using the vacuum conditi
~4.5! most of the terms inA,B,C can be evaluated with the
explicit use of the wave function. Specifically this is done f
the expectation values of the form̂P †P&, ^PP†&, ^P †P †&,
and^PP&. However, the one-body densities^Ni& and if one
disregards the componentP 4

† , as we will do here, also the
elementŝ NiNj& cannot exactly be determined in terms
X,Y without explicit knowledge of the wave function. How
ever, there exists a fast converging expansion ofNi in terms
of (P †)n(P)n @40# and then also the above expectation v
ues can be calculated as a function ofX,Y. An alternative
way is to use the so-called number of particles operator te
nique@38,41#. In the present paper we will, as we did in o
previous publications, restrict ourselves to theP 3

†[P 12
†

component in the RPA pair creation operator~4.4!; i.e., we
only consider pair vibrations of thepn type and we com-
pletely decouple it from thepp and nn vibrations. In this
special case it is possible to construct the RPA ground s
explicitely from Eq. ~4.5!. It has the same form as in ou
previous publication@30# and we will not repeat it here o
give the explicit form for̂ N& and^NN& as we have already
presented them in the Appendix of the above-mentioned
per. To neglectpp andnn components in the RPA operato
~4.4! is certainly an approximation which must be released
the future. However, the appearance of spurious modes in
extended 333 version~see below! introduces nontrivial nu-
merical and technical dificulties which go beyond the sco
of this paper where we investigate the SCQRPA with o
pn mixing in the quasiparticle basis. The latter is so far op
and we will determine it as usual from the minimization
the ground state energy. Having the ground state at hand
can calculatêH& and vary it with respect to the amplitude
u,v of the quasiparticle transformation~2.1!. We have
shown elsewhere@14# that this procedure leads to the equ
tions

^@H,P k
†#&50, ~4.18!

which are analogous to Eqs.~3.2! but with the BCS ground
state replaced by the SCQRPA ground state. It should
realized that Eq.~4.18! yields equations foru,v which
couple back to the RPA amplitudes. This is different fro
1-8
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the standard BCS1RPA scheme where such a coupling
absent. It should also be realized that Eq.~4.18! together
with the number equation~3.6! evaluated on the SCQRPA
ground state ensures the fulfillment of the Ikeda sum rule
this was shown in our preceding work@16#.

Before proceeding with numerical applications let us
troduce theb decay operators, since they are of great
interest in the double beta decay process.

V. BETA DECAY OPERATORS

Let us introduce the monopole~Fermi! b decay operators
in the quasiparticle representation~2.9!,

T25Npn5P i j
† yi j

3 1P i j zi j
3 1N i j xi j

3 [P k
†Rk1PkTk ,

T15Nnp5P i j
† yi j

4 1P i j zi j
4 1N i j xi j

4 [P k
†Tk1PkRk ,

~5.1!

where the coefficientsx,y,z are defined in the Table I an
the indicesk51,2,3,4 are those of theP operators defining
the extended SCQRPA basis. Here we dropped the con
term which gives a vanishing contribution for transitions b
tween different states. By inverting theP operators in terms
of the SCQRPA phonons according to Eq.~4.17! one obtains
for the transition matrix elements the general expression

^GmuT2u0&5X̄m i
† SikRk1Ȳm i

† SikTk ,

^GmuT1u0&5X̄m i
† SikTk1Ȳm i

† SikRk , ~5.2!

where the matrixS is defined by Eq.~4.13!. Let us consider
the difference giving the Ikeda sum rule for Fermi tran
tions,

(
m

u^GmuT2u0&u22(
m

u^GmuT1u0&u25Ci j ~RiRj2TiTj !,

~5.3!
e

he

io
e

e
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where we used the orthonormality relation of the normaliz
SCQRPA amplitudesX̄,Ȳ and C is the metric matrix. A
straightforward calculation using the trigonometric repres
tation of the BCS amplitudes~2.2! shows that the Ikeda sum
rule

(
m

u^GmuT2u0&u22(
m

u^GmuT1u0&u25N2Z ~5.4!

is exactly fulfilled in two cases:
~1! if one considers allk51,2,3,4 components in the

SCQRPA phonon, or
~2! if one considers only thek53 component but forc

50.
The last variant is the case we considered in our pa

because the coupledpn solution reaches the energy min
mum for c50. In this case the summation in Eq.~5.4! is
restricted to one term.

VI. NUMERICAL APPLICATION

Let us first consider the exact solution of the Hamiltoni
~2.7!. In this case the wave functions of the system hav
definite number of particles and are therefore given by
linear superposition@26#

uZ,N,n&5 (
Z5N012N1 ,N5N012N2

cN0N1N2
~n!

3P†
pn
N0P†

p
N1P†

n
N2u0&, ~6.1!

whereP† operators are defined by Eq.~2.3! andn labels the
eigenstates given by the diagonalization procedure. TheT6

operators connect (Z,N) with (Z71,N61).
Of course the Ikeda sum rule is automatically fulfilled:
(
n

^Z,N,0uNnpuZ11,N21,n&^Z11,N21,nuNpnuZ,N,0&2(
n

^Z,N,0uNpnuZ21,N11,n&^Z21,N11,nuNnpuZ,N,0&

5^Z,N,0uNnuZ,N,0&2^Z,N,0uNpuZ,N,0&5N2Z. ~6.2!
tate
no
of

wo
tron
uss
pe
we
ill
The energy of thepn excitation is found as the differenc
between the eigenvalues for (Z11,N21) and (Z,N) nuclei.

As mentioned in Sec. IV, we only want to consider t
P 3

†[P 12
† component of the QRPA operator

G†5XP 3
†2YP3 . ~6.3!

An important point to be discussed is whether the excitat
energy must be corrected forlp2ln as ussualy done in th
QRPA, in connection with the double beta decay~see, e.g.,
Ref. @30#!. Also in Ref. @15# we applied a correction to th
n

SCRPA energy in order to account for the true ground s
differences of the seniority model. We here argue that
correction of any of this kind should be applied because
the one-dimensional approximation~6.3! where the compo-
nentsP 11

† andP 22
† have been neglected. Indeed the latter t

components correspond to spurious proton and neu
states, i.e., to rotation in the gauge space as we will disc
below. In a one-dimensional cut through a Mexican hat ty
of potential energy rotational motion is absent and then
also do not have to correct for it. These considerations w
be confirmed by the study of the 333 QRPA, presented
1-9
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D. S. DELION et al. PHYSICAL REVIEW C 62 044311
below, where we includedP 1
† ,P 2

† ,P 3
† components. We also

will demonstrate that the one-dimensional SCQRPA is
appropriate approximation to the 333 case except in clos
vicinity of the transition point in thepn interaction. Only in
a rather narrow region around the phase transition doe
coupling between the three modes exist. Our procedure
straightforward generalization of thepn states discussed i
Refs. @16,30# where a BCS basis, which does not coup
protons with neutrons, was used. In this case one can us
formulas for the SCQRPA vacuum in Ref.@30#. One also has
the following relations:

^N11&5^N22&[^N&,

^N12&5^N21&50. ~6.4!

The SCQRPA system of equations~4.6! becomes a nonlinea
equation to determine the eigenvaluev and the amplitude
Y3. The conditions for the number of particles become,
this case,

v1p
2 1v2p

2 5sin2 a cos2 f1sin2 b sin2 f5
Z2^N&

2~V2^N&!
,

v1n
2 1v2n

2 5sin2 a sin2 f1sin2 b cos2 f5
N2^N&

2~V2^N&!
,

~6.5!

and allow us to express the anglesa,b in terms of f. In
order to have a solution of these equations it is necessa
fulfill the condition

^N&<min$Z,N,2V2Z,2V2N%. ~6.6!

By using the compatibility condition~3.5! together with the
SCQRPA equation one expresses the Lagrange multip
lp ,ln and the amplitudeY3 as functions of two independen
anglesc,f. The criterion to select among different solutio
is to find the constrained energy minimum of the syste
This energy is calculated as the expectation value^H& of the
Hamiltonian~2.12! on the SCQRPA vacuum. Our numeric
analysis showed that, as in the pure BCS case, such a m
mum is always reached forc50 and therefore the anglef is
fully determined.

For the interaction strengths we selected the valuesGp
5Gn50.2 andFpn /Gp50 or 1. The p-p strengthGpn , as
usually in such a type of analysis, is taken as a free par
eter on which depends the stability of the system. We a
considered the degeneracy of the shell to beV56. This
value was considered instead ofV55 in our previous papers
because it describes a more general nonsymmetricpn sys-
tem. We will analyze two important cases, namely,

~A! N5Z,

~B! NÞZ.
04431
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A. NÄZ

This case is very important because the system has e
g.s. stable~positive! solutions for any value of the p-p
strengthGpn . Indeed in Fig. 2 is plotted by a dashed line t
exact energy difference as a function of theGpn /Gp ratio for
the caseN5Z54, with Fpn50. It is computed as the dif-
ference between the ground states (n50) of the odd-odd
(Z11,N21) and even-even (N,Z) nuclei using a diagonal-
ization procedure described above. The difference is alw
positive and therefore the system is stable. This is also
flected by the QRPA analysis. The QRPA excitation ene
is plotted in the same figure by a dotted line for two case

~a! Gpn,Gcrt , f50,

~b! Gpn.Gcrt , f5p/4.

Beyond the critical pointGcrt /Gp'1 solution ~a! be-
comes unstable~QRPA ‘‘breaks down’’!, but solution~b!,
corresponding tof5p/4, becomes stable and follows th
trend of the exact g.s. solution. In other words beyond t
point the pn uncoupled BCS basis with the anglef50 is
replaced by a coupledpn basis, corresponding to a ‘‘de
formed’’ minimum in the isospin space withf5p/4. This is
exactly the situation we want to clarify in this paper, i.e
how the QRPA or r-QRPA passes in a continuous w
through the phase transition point. The QRPA excitation
ergy as a function ofGpn is close to the exact energy, exce
for the region around the critical valueGcrt .

This conclusion is also confirmed by the analysis of t
mean field stability matrix

S5S Ai j Pi j

Pi j Ai j
D , ~6.7!

FIG. 2. The exact g.s. excitation energy~dashed line!, the
QRPA ~dotted line!, and the SCQRPA excitation energy~solid line!
for Gp5Gn50.2, Fpn50, V56, Z5N54.
1-10
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whose componentsi , j 51,2,3 are computed in the Appen
dix. In this case all expectation values on the standard B
vacuum ~except ^PP†&) vanish and the matrix~6.7! de-
couples into two blocks: a 434 block corresponding to the
generatorsP 1

† ,P 2
† and a 232 block corresponding to thepn

P 3
† component, whose eigenvaluesnk , k51,2, are con-

nected with the QRPA frequency by the following relatio

v25n1n2 . ~6.8!

For the first solution~a! with f50 before the critical value
of the p-p strengthGpn both eigenvaluesnk are positive and
the system is stable. Beyond the critical valueGcrt , n1 be-
comes negative and therefore the QRPA frequency im
nary, the system becoming unstable. For any value of
Gpn strength the four eigenvalues of the first block keep th
sign constant: two of them are positive and two vanish, d
to the number of particles conservation law. The second
lution ~b!, with f5p/4, displays an opposite picture. Fo
Gpn,Gcrt the system is unstable: at least one of the eig
values of the stability 232 submatrix is negative. Beyon
this point both eigenvalues are positive and the system
comes stable.

Let us now consider the SCQRPA system of equatio
As mentioned in Sec. III the BCS solutions should depend
anglesc,f. For c50 one obtains a minimum of the con
strainded energŷH&, defined as the expectation value of t
Hamilonian~2.7! on the SCQRPA vacuum. In Fig. 2 is plo
ted by a solid line the SCQRPA solution versus the ra
Gpn /Gp . As in the QRPA case one has two kinds of so
tions:

~a8! Gpn,Gcrt , f850,

~b8! Gpn.Gcrt , f85p/4.

A significant difference with respect to the QRPA excit
tion energy occurs only around the critical valueGcrt /Gp
'1. It is interesting to point out that the exact g.s. ene
Eee of the even-even systemN5Z54, plotted in Fig. 3 by a
dashed line, is close to the g.s. SCQRPA total energy^H̃&
~solid line! for Gpn values before and after the phase tran
tion. This energy is defined as the expectation value of
Hamiltonian~2.7!, but without the Lagrange multipliers

^H̃&[^H&1lpZ1lnN. ~6.9!

B. NÅZ

Let us consider the same set of parameters as in the
vious caseGp5Gn50.2, Fpn50, V56, but with different
number of protons and neutrons, respectively,Z54, N56.
In Fig. 4 the QRPA excitation energy is shown as a funct
of the ratioGpn /Gp by a dotted line and the SCQRPA e
ergy by a solid line. As in the previous case one has t
kinds of solutions:

~a! Gpn,Gcrt , f50,

~b! Gpn.Gcrt , fÞ0,
04431
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whereGcrt /Gp'1. The values of the anglef for solution
~b! are those in Fig. 1~b!, corresponding to a stablepn
coupled BCS solution. The coupledpn solution ~b! beyond
the critical point has a minimum with respect to the co
strined energŷH& for the anglec50.

FIG. 3. The g.s. energy of the even-even nucleus~dashed line!

and the expectation value of the Hamiltonian^H̃& given by Eq.
~6.9! on the SCQRPA vacuum~solid line! versus the ratioGpn /Gp .
For Gpn /Gcrt,1 one has apn uncoupled solution withf50 while
for Gpn /Gcrt.1 a coupledpn solution withf5p/4. The param-
eters are the same as in Fig. 2.

FIG. 4. The SCQRPA~solid line! and QRPA~dotted line! ex-
citation energy versus the ratioGpn /Gp for Gp5Gn50.2, Fpn

50, V56, Z54, N56. ForGpn /Gcrt,1 one has an uncoupledpn
solution with f50 while for Gpn /Gcrt.1 a coupledpn solution
with fÞ0. The lower dashed line corresponds the the exact
energy while the upper dot-dashed line to the second eigenvalu
the odd-odd nucleus.
1-11
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The lower dashed line of Fig. 4 represents the exact
ference of ground states (n50) equal to E(Z11,N21)
2E(Z,N), whereas the upper dash-dotted line stands for
exact first excitation energy in the odd-odd (Z11,N21)
system (n51). It is obvious that the QRPA interpolates b
tween these two energy differences. One must realize tha
NÞZ situation is very different from theN5Z case consid-
ered before. Indeed there the exact differenceE(Z11,N
21)2E(Z,N) was always positive and the QRPA is ther
fore able to follow with its eigenvalue the energy differen
for all values ofGpn . This is no longer the case for th
presentNÞZ situation. Indeed the energy difference b
tween (Z11,N21) and (Z,N) systems turns negative fo
Gpn'Gcrt . Therefore there is no possibility that the QRP
eigenvalue represents this energy difference forGpn>Gcrt in
the pn uncoupled basis.

If one includes the p-h interaction in the Hamiltonia
~2.7!, the situation remains qualitatively unchanged. In Fig
we show by a dotted line the QRPA and by a solid line
SCQRPA excitation energy for the same set of paramet
but with Fpn /Gp51. One can see that the critical streng
Gcrt is shifted to the right with respect to Fig. 4.

Let us come back to our restriction on theP 12
† component

only. At least at the QRPA level it is straightforward to al
include theP 11

† andP 22
† components. In addition to thepn

pair vibration mode we then obtain two spurious QRPA
lutions at zero energy, corresponding to particle number v
lation in N and Z. The uncorrectedpn vibrational QRPA
energy is shown in Fig. 6 by the upper solid line. Howev
as we argued above, in the 333 case with the spuriou
modes the rotational energy in the gauge space has t
corrected for when considering thepn QRPA eigenvalue.
This means that we have to substract from this eigenva
the differencelp2ln @30# and the result~lower solid line!
then corresponds very closely to the exact excitation ene
of the first excited state in theZ11,N21 system~dashed

FIG. 5. The same as in Fig. 4, but forFpn /Gp51.
04431
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line!. As we see it is also very close to the eigenvalue of
one-component QRPA~dotted line!. We therefore conclude
that the one-dimensional cut through the three-dimensio
~rotational invariant! Mexican-hat-like surface, leading to th
one-dimensional problem, yields a rather good approxim
tion. Of course, as discussed before, no rotation~in gauge
space! is possible in the one-dimensional reduction a
therefore no correctionlp2ln has to be adopted in this cas
This finding may hold true for other cases of spontane
broken continuous symmetries, as well.

Let us now discuss the results concerning the beta de
matrix elements in the SCQRPA and exact cases. We pre
in Fig. 7~a! the me’s for the exact solution of the beta dec
operatorsT2 squared connecting the ground states of
even-even system (Z,N) to the one of the odd-odd system
(Z11,N21), i.e., u^Z11,N21;0uT2uZ,N;0&u2 given by
the solid line. This transition probability is given as a fun
tion of the ratioGpn /Gp . The dashed line in Fig. 7~a! rep-
resents the SCQRPA transition me’s squaredu^GuT2u0&u2.
We see that before the phase transition the SCQRPA re
duces quite well the exact solution.

After the phase transition point, where thepn pairing
catches on, the SCQRPA transition probability undersho
the exact values quite a bit. The deterioration of the agr
ment is not unexpected, since the situation is more comp
after the phase transition. Indeed in this region we have
additional symmetry breaking wherepn pairing mixes even-
even and odd-odd ground states. In analogy with the st
nonvanishing quadrupole moment of a deformed nucleus
here then have also a nonvanishing matrix element squ
u^0uT2u0&u2 after the phase transition. We show this by t
solid curve in Fig. 7~b!. In the exact case one could think th

FIG. 6. Thepn excitation energy of the 333 QRPA ~upper
solid line!, the corrected energy by the termlp2ln ~lower solid
line!, the one-component QRPA energy~dotted line!, and the first
excited exact solution~dashed line! versus the ratioGpn /Gp for the
same parameters as in Fig. 4.
1-12
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the transition probability of the first excited stateuZ11,N
21;1& in the odd-odd system to the ground state in
even-even system could approximately follow the static m
ment^0uT2u0& in thepn deformed region. This is in analog
to a b-vibration transition probability in a deformed nucleu
which follows the value of the static ground state quadrup
moment. We therefore also show in Fig. 7~b! by a dashed
line the exact transition probability u^Z11,N21;n
51uT2uZ,N;n50&u2. We see that there is indeed an obvio
correspondence between the two lines in Fig. 7~b! in spite of
the fact that detailed agreement is seen to be only of a qu
tative nature.

This probably stems from the fact that particle numbe
not a conserved quantity in our approach~besides the fac
that the quantal fluctuation contained in the SCQRPA
able to restore particle number symmetry to a large exten

FIG. 7. ~a! The beta decay matrix elements squaredu^Z11,N
21,0uT2uZ,N,0&u2 ~solid line!, u^GuT2u0&u2 ~dashed line!. ~b! The
beta decay matrix elements squaredu^0uT2u0&u2 ~solid line!, u^Z
11,N21,1uT2uZ,N,0&u2 ~dashed line!.
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shown in@15#!. Indeed as we already said once thepn pair-
ing is nonvanishing in the region after the phase transiti
even-even and odd-odd systems become mixed and it is
difficult to make any definite statement about transitio
from one state to the other unless one has exact par
number projection.

Of course the Ikeda sum rule is exactly fulfilled for a
values of the p-p strengthGpn .

VII. CONCLUSIONS

In this paper we reanalyzed the schematic but rather g
eral O~5! model representing the one-level proton-neutr
isovector pairing Hamiltonian. This Hamiltonian was used
the past to investigate the QRPA solution in the region wh
the proton-neutron pair interation strengthGpn is so strong
that it provokes a collapse of the QRPA. The point w
wanted to exploit in this work is based on the general w
dom @14# that once one arrives at a collapse of the RPA~or
QRPA!, then one has to change the single particle basis
continue with the RPA~or QRPA! beyond the phase trans
tuion point using now the ‘‘deformed’’ basis. In the prese
case, since the collapse comes as a function ofGpn , one has
to go from a BCS state which pairspp andnn states sepa-
rately to a more general BCS theory which in addition allo
for pn pairing. This is confirmed by a detailed stability stud
of the BCS ground state energy. Indeed we find that work
with the more general BCS state including simultaneou
pp, nn, and pn pairing the corresponding QRPA shows
continuous crossover from before to after the critical value
Gpn . After the phase transition the 333 QRPA shows two
spurious modes corresponding to the particle number bre
ing of protons and neutrons while there is one physical
lution corresponding to apn pair vibrational state. We also
showed that the QRPA eigenvalue has to be corrected for
‘‘rotational energy’’ in gauge space as this was advoca
long ago by Krmpoticet al. @30#. After having done this the
QRPA physical eigenvalue shows indeed good agreem
with the exact solution~Fig. 6!. We also showed that onc
we reduce the QRPA to the one-dimensional case, i.e.,
cluding onlypn pairs in the RPA operator, then there is n
need for correction since we hinder the system to ‘‘rotate
Still, as is demonstrated in Fig. 6, the one-dimensional n
corrected solution is in good agreement with the correc
three-dimensional solution. For the case of the SCQRPA
therefore restricted ourselves to the one-dimensional c
since the treatment of spurious motion is a delicate prob
in this extended RPA theory@34#. We find that the SCQRPA
improves the QRPA around the phase transition point. It a
passes in a completely continuous way from before to a
the critical point. The results for theb-transition matrix ele-
ments are more delicate to interpret. Before the criticalGpn
there is no problem and the various RPA results agree
sonably well with the exact solution. However, after the tra
sition point the agreement is of a qualitative nature only. W
attribute this to the fact that in the region withpn pairing
even-even and odd-odd systems become mixed and ther
it is very difficult to attributeb-transition matrix elements o
the QRPA~or SCQRPA! to any transition between definit
1-13
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states of the exact solution. Any further progress is there
probably only possible once one gets number projection
der firm control.

We stress the fact that the Ikeda sum rule is fulfilled in
one-dimensional SCQRPA.

In our analysis for the sake of simplicity we negected
isoscalar component of the proton-neutron interaction. In
case it can only be important forN;Z nuclei. A future in-
s.

e

nd

04431
re
n-
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y

clusion of the isoscalar pairing within the O~8! model will
complete our analysis.
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APPENDIX

In order to derive the SCQRPA matrices for the generators given by Eqs.~4.2! let us introduce for the double commutato
the notation

†Pi ,@Pj ,P k
†#‡52cib

a ajk
b Pa[2di jk

a Pa ,

†@Pk ,P j
†#,P i

†
‡52di jk

a P a
† ,

~A1!
†Pi ,@Nj ,P k

†#‡5bjk
i 2aib

a bjk
b Na[bjk

i 2ei jk
a Na ,

†@Pi ,Nj #,P k
†
‡5ci j

k 2abk
a ci j

b Na[ci j
k 2 f i jk

a Na .

The labels we used here are for pair indices:i 515(1,1), 25(2,2), 35(1,2), 45(2,1) for Ni and i 515(1,1), 25(2,2),
35(1,2) for Pi operators. The terms in the Hamiltonian~2.12! giving the contribution for the double commutators a
H11,H22,H40. For symmetrized double commutators@38#, giving the QRPA matrices for the pair indicesi , j 51,2,3, one
obtains the following relations:

Ai j [^@Pi ,H,P j
†#&5

1

2
En@bn j

i 1cin
j 2~ein j

a 1 f in j
a !^Na&#1hi j

222~hm j
22aim

a 1hin
22an j

a !^Na&1hmn
22 aim

a an j
b ^NaNb&

2
1

2
hmn

22 ~din j
a ^P m

† Ba&1djmi
a ^P a

†Pn&!1
1

2
gmn

22 @~bn j
i 1cin

j !^Nm&1~bm j
i 1cim

j !^Nn&2~ein j
a 1 f in j

a !^NmNa&2~eim j
a 1 f im j

a !

3^NaNn&12cim
a bn j

b ^PaP b
†&12bm j

a cin
b ^P a

†Pb&#2
1

2
hmn

40 @din j
a ^PmPa&1dim j

a ^PaPn&1djni
a ^P m

† P a
†&1djmi

a ^P a
†P n

†&#, ~A2!

Bi j [2^@Pi ,H,Pj #&5hi j
401hji

402
1

2
hmn

22 ~di jm
a 1djim

a !^PaPn&2~hin
40ajn

a 1hm j
40aim

a 1hmi
40ajm

a 1hjn
40ain

a !^Na&1hmn
40 ~aim

a ajn
b 1ajm

a ain
b !

3^NaNb&2
1

2
hmn

40 @~di jn
a 1djin

a !^P m
† Pa&1~di jm

a 1djim
a !^PaP n

†&#1gmn
22 ~cim

a cjn
b 1cjm

a cin
b !^PaPb&. ~A3!
nd.
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@9# F. Šimkovic, J. Schwieger, G. Pantis, and A. Faessler, Fou
Phys.27, 1275~1997!.

@10# K. Muto, Phys. Lett. B391, 243 ~1997!.
@11# A. A. Raduta, C. M. Raduta, A. Faessler, and W. A. Kamins

Nucl. Phys.A634, 497 ~1998!.
@12# F. Šimkovic, A. A. Raduta, M. Veselsky, and A. Faessle

Phys. Rev. C61, 044319~2000!.
@13# R. V. Jolos and W. Rybarska-Nawrocka, Z. Phys. A296, 73

~1980!.
@14# J. Dukelsky and P. Schuck, Nucl. Phys.A512, 446 ~1990!;

Mod. Phys. Lett. A26, 2429~1991!.
@15# J. Dukelsky and P. Schuck, Phys. Lett. B387, 233 ~1996!.
1-14



tal

Pe

.

nd

ys.

la,

y,

on
s-

Fiz.

PROTON-NEUTRON SELF-CONSISTENT . . . PHYSICAL REVIEW C62 044311
@16# D. S. Delion, J. Dukelsky, and P. Schuck, Phys. Rev. C55,
2340 ~1997!.

@17# J. Dukelsky, G. Ro¨pke, and P. Schuck, Nucl. Phys.A628, 17
~1998!.

@18# M. K. Cheoun, A. Bobyk, Amand Faessler, F. Sˇ imkovic, and
G. Teneva, Nucl. Phys.A561, 74 ~1993!; A564, 329 ~1993!.

@19# M. K. Cheoun, A. Faessler, F. Sˇ imkovic, G. Teneva, and A.
Bobyk, Nucl. Phys.A587, 301 ~1995!.

@20# O. Civitarese, M. Reboiro, and P. Vogel, Phys. Rev. C56,
1840 ~1997!.

@21# B. Bremond and J. G. Valatin, Nucl. Phys.41, 640 ~1963!.
@22# B. H. Flowers and M. Vujicic, Nucl. Phys.49, 586 ~1963!.
@23# P. Camiz, A. Covello, and M. Jean, Nuovo Cimento Soc. I

Fis., B 42, 1839~1966!.
@24# A. Goswami, Nucl. Phys.50, 228 ~1964!.
@25# A. L. Goodman, inAdvances in Nuclear Physics, edited by J.

W. Negele and E. Voigt~Plenum, New York, 1979!, Vol. 11,
p. 263.

@26# C. Dasso and A. Klein, Nucl. Phys.A210, 443 ~1973!.
@27# J. A. Evans, G. G. Dussel, E. E. Maqueda, and R. P. J.

azzo, Nucl. Phys.A367, 77 ~1981!.
@28# G. G. Dussel, E. E. Maqueda, R. P. J. Perazzo, and J

Evans, Nucl. Phys.A450, 164 ~1986!.
@29# J. G. Hirsch, P. O. Hess, and O. Civitarese, Phys. Rev. C54,
04431
.

r-

A.

1976 ~1996!; Phys. Lett. B390, 36 ~1997!; Phys. Rev. C56,
199 ~1997!.
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