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Proton-neutron self-consistent quasiparticle random phase approximation within the @) model
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The self-consistent quasiparticle random phase approximéB@QRPA within the O5) model in the
coupled proton-neutron representation is analyzed. The exact vacuum wave function is used to compute all
involved matrix elements. A stability analysis of the stationary points is performed. A phase transition from the
uncoupled to the coupled stable proton-neutron regime beyond the QRPA breakdown value of the particle-
particle strength is evidenced. The excitation energies are close to the lowest stable exact eigenvalues given by
the diagonalization procedure for all cases. The conditions for which the Ikeda sum rule is fulfilled for all
values of the particle-particle strength are pointed out.

PACS numbe(s): 21.60.Jz, 23.40.Hc, 23.96w

[. INTRODUCTION ized pn Bogoliubov transformation among one or more
shells[23,24]. For a review of the properties and applications
The renormalized quasiparticle random phase approximaosf this last transformation see, for instance, R&b]. In
tion (r-QRPA) became an important theoretical tool to inves-order to test the accuracy of the different approximate meth-
tigate collective excitations in superfluid nuclei. In the lastods several schematipn Hamiltonians were investigated
decade special attention was focused on applying thig26—-29.
method to analyze the proton-neutropnj interaction in- In a recent paper30] we made an analysis of the Fermi
volved in beta and double beta decay proceddgs Al- beta decay transitions in the(® model, using the exact
though the beta decay transition is modeled by a particleSCQRPA vacuum wave function. As usual neutron-neutron
hole (p-h) operator, the important role of the particle-particle (nn) and proton-protong{p) pairing was assumed. The cor-
(p-p) channel in explaining the suppression of the two-respondings andv amplitudes were obtained from the mini-
neutrino double beta decay rate was evidenced by standardization of the SCQRPA ground state energy. Excitation
QRPA calculationd2]. Unfortunately the QRPA becomes energies and transition probabilities were obtained for values
unstable for physical values of the p-p interaction and thisf the p-p interaction strength which are well above the point
effect is connected with the overestimation of the groundwvhere standard QRPA breaks down. However, quantitative
state(g.s) correlations. The r-QRPA accounts for g.s. corre-agreement with the results from exact diagonalization were
lation effects and is able to go a short distance beyond theapidly degraded beyond the transition point. It is in fact well
transition point in a more or less reliable wg3—12. The  known from our studies with other modefl$5] that even
so-called self-consistent QRPASCQRPA [13-17 ac-  with the SCRPA one has to change the single particle basis
counts fully for the RPA ground state correlations and im-beyond the point where the standard RPA or, as in our case,
proves on the r-QRPA. the standard QRPA breaks down, which is where the first
The importance of thgn correlations in the Gamow- excited state becomes degenerate with the ground state.
Teller double beta decay process was intensively investiSince the RPA correlations which drive the system to the
gated in the last decad&8,19 and recently a critical analy- instability are, in the present contextn pair correlations, it
sis was performed in Ref20]. The pn Hamiltonian can be is natural to augment the standard quasipatrticle transforma-
diagonalized using different approximations. We mentiontion to include mixing of proton and neutron states. We will
here the most important methods: the use of a coupled show that in this new quasiparticle basis the standard QRPA
trial wave function21], the a-like representation of the qua- has a physical branch beyond the transition point which con-
siparticle as a creation proton operator plus the product afinuously joins with thepn uncoupled regime. We will ex-
one neutron and two proton anihillation operatf2g], and tend the QRPA to the SCQRPA or r-QRPA and study exci-
finally the most popular approach consisting in the generaltation energies and transition probabilities in the region
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around and beyond the transition point. dure is compared with the BCS, QRPA, and r-QRPA results.

The use of a quasiparticle basis includimg mixing is, of ~ The important role played by the isoscalar termgih tran-
course, not new and has also been applied within the contexition and therefore in the doubidecay process is stressed.
of double beta decay in a series of wofls8,19 using the In our analysis we will restrict ourselves to the isovector
standard QRPA. However, in these latter works only the repairing interaction in order to investigate in the simplest case
gion before and up to the transition point has been investithe idea that the changing to a “deformed” basis in the
gated. We therefore will apply for the first time the r-QRPA isospin space is the essential ingredient in restoring the sta-
and SCQRPA in this context using this more general quasibility of the system beyond the critical point. Therefore we
particle transformation and investigate the region beyond thevill consider only real amplitudes in E@2.1). A future in-
transition point in a more systematic way. This is the mainclusion of the isoscalar interaction within th&€8p model of
purpose of the present work. Ref.[33] will of course improve our analysis. However, iso-

In detail our paper is organized according to the followingscalar pairing in any case can only be important and there-
plan. In Sec. Il is presented thgn basis; in Sec. Ill is de- fore influences the double beta decay forZ nuclei.
rived the self-consistent system of BCS equations, and the A useful representation of the BCS amplitudes can be
stability analysis of different solutions is performed. In Sec.written in terms of the trigonometric function23]. It auto-
IV the SCQRPA procedure is briefly described and in Sec. Vimatically satisfies the orthonormality relations and is a prod-
the Ikeda sum rule is analyzed. Section VI is devoted tauct of three rotations:
some representative numerical examples. Conclusions are
drawn in the last section. Usp Uy, DVi1p Upp

Uin U2n  Uin U2n
Il. EXTENDED QUASIPARTICLE BASIS
“Uip TUzp ulp U2p

Though the mixing of protons and neutrons in a general-
ized quasiparticle transformation is well documented in the
literature[25] we here repeat the essential steps in order to cosy  siny 0 0
make our paper self-contained and also to be able to connect

—Uin “U2p Uip Uy

—siny cos 0 0
this extended transformation to our more general SCQRPA _ ny v .
(r-QRPA) approach. - 0 0 cosy  siny
Let us consider a spherical two-leyeh system with the 0 0 —siny cosy
same spinj. The general Bogoliubov transformation, con-
necting the particlec (7=p,n) with the quasiparticle cosa 0 sina 0

bLk(,uzl,Z) representation, is given by the following rela-

tion [24]; » 0 cosp 0 sing
: ; —Sina 0 COoSa 0
c u u b .
?" 1p 2p V1ip Uzp 1" 0 —sinB 0 cosB
an _ Uin Uop Uin Uo2n b2k COS¢ Sih(b 0 0
CpkSk “U1p “Uzp Uy Uzp || byiSk _sing  cose 0 0
ChiSk —Uin —Uzn Uip Upp DSk X .
0 0 cosp sing
0 0 —sing cos¢

wherek is the spin projection and,=(—)! . This trans-
formation mixes the proton with neutron states. In the case of 2.2

complex amplitudes one can simultaneously analyze the is_l-_h, ‘ ion has four ind q .
ovector T=1) and isoscalarf=0) modes. is transformation has four independent parameters given

The interplay between the isoscalar and isovector pairiniy the angles characterizing the BCS amplitudess con-
interactions is presently an important subject of investigal'€cting the same kind of particles ari¢ which mixes the
tion. The effect should be very important especially #or proton W't_h the neutron states. . .

~N nuclei. In Ref[31] a realistic shell model calculation in Let us mtroducg the number OT particles and pairing op-
the pf shell evidenced a dominance of the isovector pairingerators in the particle representation,

in the ground state and the importance of the isoscalar com-
ponent with increasing excitation energy. Recently in Ref.
[32] an analysis of the interplay between isovector and isos-
calar components within the proton-neutron coupled BCS Pl =cf kCT Sy, (2.3
approach for a&N=Z single level system was performed. A 172 v

solution with a nonvanishing isoscalar gap was found, de- o ) ) ) )
pending on the ratio between the isovector and isoscalar paifnd Similar operators in the quasiparticle representation,
ing strengths. A similar analysis, but within the¢8D model, N o

is given by Ref[33]. There the exact diagonalization proce- Nj=bjby, i,j=1,2

_ T _
N’TlTZ_CleC’Tzk’ T=p,Nn,
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TABLE I. The coefficients of the operators entering the Hamiltor{) in the quasiparticle represen-
tation given by Eq(2.9). djj=d;; /(1+ &;;) = V2Q/(1+ 5;).

y T Xj yi Zj w 9y
1 N UipUjp = Vipljp (uipvjp+ujpvip)§j (Uipujp+vjpuip)§j 2Q0ppp 0
2 N UinUjn = Vinljn (UinVjntUjnvin)dij  (UinUjntojalin)diy — 202pnn 0
3 Npn UipUjn ~VinVjp (Uipvjn T Ujpoin)dij  (vipljn T ojpUin)dij 2Qppn Fpnl4
4 Npp UinUjp~ Vipljn (UinvjptUjpvip)dij  (VinUjp+ujnlip) dij 2Qpnp  Fpnl4
B h el
5 P$ ~ (Uipvjp + Uipvjp) (uipujp+ujpuip)ﬂj *(UipUijFUijip)ﬂj 20xp  —Gpl4
6 Pn _(uinvjn+uinvjn) (Uintn+anUin)dij _(Uintn+anUin)dij ZQXnn _Gn/4
N ! hat
7 Ppn 7(uipan+uintp) (Uipan“FUijin)ﬂj _(Uipvjn'i'vjpvin)ﬂj ZQXpn 7Gpn/4
8 Pap _(uinvjp+uipvjn) (uinujp+ujnuip)d”— —(vinvjp-i-vjnvip)dij ZQ)(np _Gpn/4
7~;|TJ — b;rkaESk:ﬂ (2.4) (.Fermb beta decay process. Tipa quasilparticle representa-
! tion of a one-body operator can be written as
Let us also introduce the normalized quasiparticle pair op- + +
erators T =X Nij+yiPi + 2] Py +w?, (2.9
Pt where the summation for\;; operators is over i(j)
ij . = . i(i
PiTj:d_’ dij= /—29(1+ 51, (2.5 (1,1),(2,2),(1,2),_(2,_1) and foiP; operators overi(j)
ij =(1,1),(2,2),(1,2) indices. Here the indexcorresponds to

- . a concrete operator as in Table I.

where() =+ 3. These operators satisfy the usual commuta- 4, the normal and pairing densities, respectively,

tion relations within the &) algebra[26]. The commutators

can be symbolically written as Priry=VirViny
. pl1=¢5.,,—gmn

[PIJ ,Pk|] 5IJ,kI aukINmm XTlrzzvirluiTz! (2‘1@
- t1—pmnpt

[Nij P bijia P mn- by using the trigonometric representation of the BCS ampli-

tudes(2.2), one obtains the following relations:

[Py \Nal=Cid Prns €l =bikij » (2.6) g

ppp=SIF a coS’ ¢+ sir’ Bsir? ¢,

where summation over the repeated labels is understood.

This symbolic way to consider the commutation relations =sir? a sir? ¢+ sir? 8 co2
will help us to derive different relations in a more compact Prn “ ¢ A ¢
form. . : .
=sin 2¢(sin? a—sir? B)/2,

We will use in our analysis the same Hamiltonian as in Pen a “« p)

Refs.[16,30), Xop=(5in 20 COZ ¢+ sin 2B Sir? )12,
F . : :
H=e€,Np+ €N, + %(ananjL NppNpn) Xnn=(sin 2a sir? ¢+ sin 28 cog ¢)/2,
G Xpn= SiN 2¢(sin 2a —sin 23)/4. (2.1)

Sopip —G"”(PT Pt Pl Pon)
n n n . . . . . . .
4 PP o40n 4 PP nen P The Hamiltonian written in the quasiparticle representation
T 2.7 takes the standard form
Yy v ’

— T
= €5T5+ gy

— 400 11 20 31 22 40
where5=1,2 andy=3-8 and H=HT+H"+HTHH+ H*+ AT, (212

f—e -\ e—e —\ (2.9  Where the differenti terms are given by
p=€ " Ap, €n=€nAn- :

Heree, denotes the single particle energies and.agrange H%=e;w’+ g (WwwW?+ 22,22, (2.13
multipliers accounting for the number of particles conserva- 1

tion law. This Hamiltonian contains in addition to the proton H=EmnnNmn,

and neutron pairing terms a p-h interaction with strerfgth

and a p-p part with strengtB,,, which actually is thneg;n H?= (€5zmq+ i) (P it Pann).

pairing interaction. This schematic Hamiltonian is appropri-

ate to simulate the important features of the monopole H3=h3 (P Vit Na Prn).
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H 2= ht?nzn kI,PLn,PkI + gfnznkl[/\/‘mn/\[kl - 5nkNmI] ’ (Zgb_ Zrina:r?nabO\/rS)) 65+ hig_ h%‘lonalr'ﬁnabw\/rS)
HO=h2 (P PL+PurPu). + b1l Nia) + Mok — 8fanat Mo Ars)
rs T T rs T —
The quasiparticle energiés,, are defined as the coefficients +bian( P mnP rs) + Bitan{ P rsPmn)) =0, (3.2
of Myn:
5 " where the expectation value of an operafbron the
Emn= €Xmnt LW (X0t Xam) — 2 20177k 1+ Ginkkn- SCQRPA vacuuniRPA) is defined as

(2.14

The other notation in Eq$2.13 is defined as follows: _ (RPAT|RPA)

TN (3.3
20 Y(y?Y Y Yy pMmn < > <RPA|RPA>
hinn=9,LW (Yot Zhn) + 2/ X5 byiij 1,
s Y oy iy oy The system given by Eg3.2) can be seen as a system of
himnki= 95(YmeXii + ZmXik) three linear equations for two unknowag and e,:
h22 — Y Y 4 Y 57 ,
mnkl gv(ymnykl Zmnzkl) Da161+ Da262+ Da3:01 aE(a,b). (3_4)
gfnznklzgyx%nxﬁ(a . . -
In order to have a solution of this system it is necessary to
h4m0nk|=gyyr}rlmzlz/| , (2.15 fulfill the usual compatibility condition

where the summation on the subscript indices is taken over de{(D)=0. (3.5
(1,1),(2,2),(1,2) iny,z and over (1,1,(2,2),(1,2),(2,1) in
E,x coefficients.

The expectation value of the Hamiltonian on the stand
BCS wave function takes the following form in terms o

arJhe number of particles equations are obtained by using the
i expectation values of thil,,N,, operators on the vacuum

densities: [16,30:
H%=2Q €4ppp+ 2Q€npnn— Gp(Lxpp) >~ G Lxnn)? Z=w+ x5 (N
_ZGén(QXpn)z—l— ZFF,)n(QPpn)Z, (2.16 :ZQ(Uip_l_v%p)_l_(uip_Uip)<N11>+(U§p_U%p)<N22>

where the renormalized prime energies and strengths are de-  + (UypUzp—v1pv2p) ((N12+N2g)),
fined by

, Go . Fon_ GontFpn N=w?+x5 (N)

€, =€~ & —— = ———Pnn>

P2 e 4 b = 2003, +v3) + (U= V3 (M1D) + (U3~ 03 (N2
, Gn Fpn Gpn+Fpn +(uanZn_Ulnvzn)(<N12+N21>)- (3.6
fn:En_7pnn+T_ 4 Ppp>

If the expectation value in Ed3.1) is taken over the stan-
) dard BCS vacuunBCS) all matrix elementgme’s) of the A/
Gpn=CGpn= 5 Fon: d ish and btains th |
20" P and P operators vanish and one obtains the usual pn system
of equationg24] in which only the first two terms in Eq.
(3.2 have contribution. However, Eq$3.2) and (3.6) are

F;'m: Fpon— mGpn- (2.17 also valid for a more general vacuum, as we will show be-
low. The standard BCS system of equatid3s2) can be
written as

Ill. SELF-CONSISTENT BCS EQUATIONS

The generalized BCS equations within the SCQRPA € (vapUppt Uaplpp) T €n(Vantippt Uanlbp)
scheme are derived from the extremum conditigi) =0
[34], i.e., +Fpn(vapubn+uapvpn)+rpn(vanubp+ uanpr)

<[H PTb]) :<[H20+ H3L PTb]>: 0 - App(uapubp_ Uapvap) —Ann(UanUpn—Vanlan)
! a l a 1
- Apn(uapubn_ Uanvbp) _Apn(uanubp_ Uapvbn) =0,

(a,b)=(1,1,(2,2,(1,2). (3. 3.7

Using the Hamiltonian written in the quasiparticle represen-
tation (2.13 one obtains where the following notation was introduced:
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, F Gy, t+F €= €,SIN2a—A_COS2, T=p,N, (3.10
ep=ep—Gpppp+%—¥pnn.

€.5=€,8iN2B—A . cos 2B,
” Fpn Gpn+Fpn o N i
enzen_GnPnn"'T_TPpp, eaﬁ_(fp_En)SIrKa+B)_(App_Ann)Coqa—’—B)l

I',=I,,sin2a—A,,cos 2«
_ @ pn pn )
l_‘pn_ FanPpna

(3.8 [p=Tp,sin26—A,,cos 26,

Ig=Tpnsin(a+B)—A,coga+B).

The last two equation€3.9) can be seen as a homogeneous
Apn=GpQxnn- linear system in sig,cosy. One can obtain a nontrivial so-
lution if the determinant of the coefficients vanishes; there-
In this case the quasiparticle energies defined by(Eq4  fore the square brackets in E§.9) are separately vanishing.
are automatically diagonal. Finally the system of BCS equations does not depend on the
First of all let us discuss which are the possible cases t@ariable s, which is consistent with the fact that the total
have solutions for the syste(8.7). We will generalize the energy(2.16) is also not dependent on this angle. By taking
analysis performed in Ref23] to the Hamiltonian(2.7),  again the sum and difference of the first two equations one
containing arbitrary p-h and p-p terms. By using the trigono-obtains
metric representation of the amplitudé€z.2) and also by ) .
adding and substracting Eq&.7) with (a,b)=(1,1),(2.2) €pa COS ¢+ €n, SIF ¢+, SN 20 =0,
one obtains the following system of equations: €ns cod ¢+ €os Sir? $—T ysin 26.=0,

Apn: Gp,)nQXpna

App=GpQxpp:

(€pat €np)COS P+ (€nq+ €pp)SIM? p+ (I, — T g)sin 2¢=0,

€,55IN2¢p—2T" ,5C08 25 =0. (3.11
[(€pa—€np)COS d+ (€na— €pp)SIM’ o+ (T +Tp)SIN24]  1pig system of equations is equivalent to the system of sta-
X COS 2+ [ — €,55iN 2+ 2T, 5 cOS 2p]sin 246=0, tionary conditions
(3.9 JH® gH® gHO

=0. (3.12
(€pa— €np)COS P+ (€ny— €pp)SIF da  IB I

It can be seen as a system of three linear equations of the

+ (Lo + T g)sin2¢]sin 2y type (3.4) for the unknownsey, €, [or A, A, according to
—[— €,35in 24+ 2T, 5 cOS 2p]cOS 24=0, Eg.(2.9)]. In order to have nontrivial solutions it is necessary
to fulfill the condition(3.5); i.e., the determinant of the ma-
where we introduced the notation trix
|
cog ¢ sin 2« sir? ¢ sin 2a —(AppCOS ¢+ A, sir? ¢)cos 2u+T ', sin 2¢

D(a,B,$)=| sirf¢sin2p cog ¢ sin2B —(AppSin? ¢+ Ay, co8 p)cos28-Tgsin24 | (3.13
sin2¢sinf(a+B) —sin2¢sin(a+pB) —(Ayp—Apy)sin2¢coda+ pB)—2I",zc08 2

should vanish: Let us first consider the cadé¢=Z which is of interest for
proton-rich nucle{35]. There are two kinds of solutions.
detD(e,B,¢)=0. (3.14 (al) The compatibility condition(3.14) is fulfilled for «
, , =—, ¢$=0,7/2. This corresponds to an uncoupled system
The anglesa and B are fixed by the number of particle of BCS equations for protons and neutrons, respectively:
conditions(3.6), which take the following form:
7 €pa= €np=0. (3.16
sir? a co ¢+ Sir? B sir? ¢p=-—, o N
2Q (a2 One can also satisfy the compatibility condition
(3.19 for a=—B, ¢=ml4, a situation in which one has
(3.15 App:Ann:_F_pn:O andA,,#0; therefore a qua;iparticle is
a superposition of a proton and a neutron particle state.

sir? a sir? ¢+ sir? B cos ¢= %
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80 ———————7———————7—————— 40 ——————————1
L . 20_
40 S : !
2 \/____ o O ]
[0] - : [0]
2 ot ; 1 2 (b)
e | § ] ¢ xf .
=} i : ] <o L ]
-40 | ; (a) . i ]
L : i 40 .
-80-"""""""- -60-"""""
0 1 2 3 0 1 2 3
Gpn/Gp Gpn/Gp
40 ———— ]
—_ ]
20 | ]
> OF ]
8 [
- {c)
S 20 .
[ L
=3
-40 -
60 L ' '
0 1 2 3
Gon/ G,

FIG. 1. (a) The anglesx (solid line), B8 (dotted ling, and ¢ (dashed lingdefined by Eq(2.2) fulfilling the BCS compatibility condition
defined by Eq(3.14 versus the rati&,,/G,, for the unstable regime. The parameters of the Hamitonian given by2Efy.are G,= G,
=0.2,F,,=0, andQ2=6, Z=4, N=6. (b) The same as ifia), but for the stable regimégc) The same as i), but for F,,/G,=2.

We will show in the next section that the solutiof&l)  condition deD(Z,N,¢)=0 is fulfilled. There are two re-
and (a2 are stable against QRPA oscillations for comple-gions for which one has

mentary intervals of th&,, strength divided by a critical

valueGg,, . Solution(al) is stable forG,,< G, and(a2) for (1) Gpn<Gcn, B<O,
Gpn>Gert -
The caseN#Z is important for the beta decay transitions. (2) Gpn>Gert, B>0.

There are also two kinds of solutions.

(b1) The compatibility equationi3.14) as in the previous
case has as solutions=0,7/2 and corresponds to an un-
coupled system BCS equation for protons and neutrons, re-
spectively. These solutions are stable for values of the (3) Gpn>Ger, B<0
particle-particle strengtl®,, <G .

(b2) There is an important class of solutions with# 0, is fulfilled, as is shown in Fig. (b), then the solution be-
=0, corresponding to a couplgan system. Let us con- comes stable. Therefore the sign of the anglegiven as a
sider the following set of parameter&,=G,=0.2, F,,  square root according to E(3.15, together with the value
=0. In Fig. Xa@ are shown the anglea (solid line), B of the G, strength determines the stability regime of the
(dotted ling, and¢ (dashed lingfor which the compatibility  solution.

These solutions are unstable with respect to the QRPA oscil-
lations.
If the condition
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From Fig. 1a) one can see that f@,,= G, the anglex If one considers the SCQRPA vacuum, to be introduced
vanishes. This critical case can be analytically analyzedbelow in the generalized BCS equatitth2), the expectation
From Eq.(3.15 one obtains values of the quasiparticle operatav$P have nonvanishing

contributions and, according to our calculations, the conclu-
Z+N Z N . . o o -
Sir? 8= . si ¢= ., cog = _ sions remain qualitatively unchanged; i.e., the compatibility
2Q) Z+N Z+N condition (3.5) for a stable coupleghn solution is also ful-
(317 filled for Gpp>Geyr, B<0.
The determinant of the matriD(Z,N,¢) can easily be This c_oncl_udes our study of the stan_dgrd _BCS sqlutlon of
evaluated, the Hamiltonian2.12 whenpn(T=1) pairing is considered

simultaneously with thggp andnn pairing.
, Let us now come to the proper subject of this paper,
detD(Z,N,$)=| 1= 55~ (Gp+ Gn=2Gy,) namely, the study of extended RPA equations in this new
quasiparticle basis introduced above.
2
<2

and one obtains a vanishing value for two cases:

ZN 3/2

7iN| (3.18

IV. SELF-CONSISTENT QRPA EQUATIONS

The extension of the RPA approach to include ground

(8) Z+N=2Q, state correlations in a systematic way and which we called
the self-consistent RPASCRPA in the pasfalso called the
(b) G{m:(Ger G,)/2. cluster Hartree-FockCHF) approximation by other authdrs

seems to be a very powerful method to account for strong

Case(b) is that given in Fig. (a). This value of the renor-  correlations in a Fermi system. These extensions have by
malized strengthém is practically the critical valu&,,. A now a quite long history and go back to Hd@7] who
similar conclusion for this particular case was drawn in Ref.introduced already a renormalized RPA which can be con-
[36]. sidered as an approximation to the SCRPA. Later the idea of

The stability regime of the BCS solutions is connectedconsistently accounting for ground state correlations in the
with the exact exitation energy, given by the difference be-RPA was much elaborated by Ro{&8]. More recently two
tween the eigenvalues of th& ¢ 1,N—1) and ¢,N) sys- of the present authors contributed more insight into the
tems, respectively. By increasing ti@&,, strength this en- whole method in a series of pap¢fs},17. Quite promising
ergy difference of ground states changes its sign from plus teuccess for various models was achieved. The most relevant
minus forG,,=G, i.e., from a stable to an unstable re- for our study here is the investigation with the SCRPA of a
gime. multilevel pairing mode[39]. Naturally the SCRPA can also

For nonvanishing values of the p-h strendgitp,>0 the be extended to the superfluid case which we call the
situation remains qualitatively unchanged but the vabyg SCQRPA.
is shifted to the right. This can be seen in Figc)lwhere the The SCRPA and SCQRPA can be derived from a varia-
anglesa, B, ¢ fulfilling the compatibility condition(3.14) for  tional principle. To this purpose we define the functional of
Fpn/Gp=2 are plotted. an average excitation energg4]

_ 2d(E,~Eq)(OIXk Pl »)|*— (E,— E) (O] YL P ») [}
’ S ud[(OIXEP ) 2= (Ol YEPK|v) %}

, 4.0

where|0) and|v) are the ground and excited states and  and 4T is a variation(with respect toX,Y) of I'. It can also

be shown that Eq4.3) is consistent with the condition

rl=Pl, Pl=P}, Pl=Pl. (4.2)
r,|0)=T,|RPA)=0; (4.5

Minimization of E,, with respect toX{, Y{ leads to

that is, the ground state is the vacuum of the vibration anni-

(0|[6T",[H,TT1]|0)=w,(O|[ 6T, T|0), (4.3 hilation operatorg™, . More explicitly the SCQRPA equation

(4.3 is written as

where

A B\[X\ [C 0)\(X
IT=P X0 =PV (4.9 (B A)(Y):(O —c)(v)“” 49
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wherew is the diagonal matrix of the SCQRPA eigenvalues A B\[X I 0\[X
andC the metric matrix: ( — = :( ) :>w. (4.19
B A/\Y) 10 —1/ly
Ci=([P.,P{l)=5;—ali(No, 1,j=123. (4.7

In this way by introducing the vectorP=(P)), k
In the Appendix are given the detailed forms of the =1,2,3,4, the SCQRPA phonon can be written as
SCQRPA matrix elements. Equatio(%.3)—(4.6) constitute o -

in principle the SCQRPA equations. In the case when Eq.  I''=P'™X—-PY=P'S IX—-PS ly=P'X-PY,

(4.5 can be explicitly solved for the ground statePA) (4.19
(see, e.g.[42)]), one can calculate the matrix elemeumtd3,C .

as a function ofX,Y and find the solution of Eq4.6). Re- where the normalized operators

placing in the evaluation of4,5,C the SCQRPA ground Popig1 4.16
state by the BCS vacuum leads to the standard QRPA. In :
general it is very difficult to obtain the ground state from Ed. ., pe inverted:
(4.5). In cases where it is not availablg, 3,C can still be

evaluated to a large extent making use of conditidrb). P =Xt +TY (4.17)
Not all the elements of4,5,C can, however, be determined

in this way and in general one has to apply some approxiwith this inversion formula and using the vacuum condition

mation. (4.5 most of the terms in4,8,C can be evaluated with the
It is also possible to include a fourth component in theexplicit use of the wave function. Specifically this is done for
basis the expectation values of the for® "P), (PP"), (PTPT),
N and(PP). However, the one-body densitié4/;) and if one
Pa=N=N; (4.8 disregards the componeﬁ’t}, as we will do here, also the

d the di | metri trix b elements(\VjV}) cannot exactly be determined in terms of
and the diagonal metric matrix becomes X, Y without explicit knowledge of the wave function. How-
(N ever, there exists a fast converging expansion/oin terms
Ci=a8;l1- L, ij=1.2, of (PN)"(P)" [40] and then also the above expectation val-
1= o) . .
ues can be calculated as a functionXafY. An alternative
way is to use the so-called number of particles operator tech-

Cone 1 — N+ Np) nique[38,41]. In the present paper we will, as we did in our
% 20 previous publications, restrict ourselves to tR=P1,
component in the RPA pair creation operatérd); i.e., we
Cas=(N1=N2). (4.9  only consider pair vibrations of thpn type and we com-

pletely decouple it from thgep and nn vibrations. In this
We will shortly recall the procedure to solve the special case it is possible to construct the RPA ground state
SCQRPA equations in the most general case of a nondiagexplicitely from Eq.(4.5). It has the same form as in our
nal metric matrix. In order to solve the eigenvalue pr0b|emprevious publicatior{30] and we will not repeat it here or

one first diagonalizes the metric matrix give the explicit form fof Ny and{N\) as we have already
- presented them in the Appendix of the above-mentioned pa-
CZ=Zp, ZZ'=7Z'7=I, (4.10 per. To neglecpp andnn components in the RPA operator

) ) ) . . ) (4.4) is certainly an approximation which must be released in
where is the diagonal eigenvalue metric matrix. By intro- {he fyture. However, the appearance of spurious modes in the
ducing the normalized eigenvectors extended X 3 version(see belowintroduces nontrivial nu-

merical and technical dificulties which go beyond the scope
X —S(X) 4.11) of this paper where we investigate the SCQRPA with only

Y Y pn mixing in the quasiparticle basis. The latter is so far open
and we will determine it as usual from the minimization of
and normalized matrices the ground state energy. Having the ground state at hand we
can calculat€H) and vary it with respect to the amplitudes
A A u,v of the quasiparticle transformatiof2.1). We have
:) :(S—l)’r( )S—l (4.12  shown elsewhergl4] that this procedure leads to the equa-
B B tions
where ([H,P{)=0, (4.18
S=u'?zt, Si=zu"1? (4.13  which are analogous to Eqg&.2) but with the BCS ground

state replaced by the SCQRPA ground state. It should be
one obtains the SCQRPA system of equations in the samealized that Eq.(4.18 yields equations foru,v which
form as for the standard QRPA case: couple back to the RPA amplitudes. This is different from
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the standard BCBRPA scheme where such a coupling is Where we used the orthonormality relation of the normalized
absent. It should also be realized that E4.18 together SCQRPA amplitudes,Y and C is the metric matrix. A
with the number equatiol3.6) evaluated on the SCQRPA straightforward calculation using the trigonometric represen-
ground state ensures the fulfillment of the Ikeda sum rule agtion of the BCS amplitude®.2) shows that the Ikeda sum
this was shown in our preceding wofk6]. rule

Before proceeding with numerical applications let us in-
troduce theB decay operators, since they are of greatest
interest in the double beta decay process. > (TIT-|0)2= 2 (T,ITL0)2=N-Z (5.4

® M

V. BETA DECAY OPERATORS
_ is exactly fulfilled in two cases:
Let us introduce the monopol&erm) B decay operators (1) if one considers allk=1,2,3,4 components in the
in the quasiparticle representatiGh9), SCQRPA phonon, or
2) if one considers only th&=3 component but fo
T,=an=79?}yi3}+73ijzi?}+Nin%EPle+Pka, :0() y P w
The last variant is the case we considered in our paper
5.1) because the couplegn solution reaches the energy mini-
' mum for /=0. In this case the summation in E(.4) is

where the coefficients,y,z are defined in the Table | and restricted to one term.
the indicesk=1,2,3,4 are those of thP operators defining

T,= an=P|leﬁ +7Dijzi4j +NinﬁE'PlTk+’PkRk,

the exte_nded_ SCQRPA ba_lsis. Here we dropped the constant VI. NUMERICAL APPLICATION
term which gives a vanishing contribution for transitions be-
tween different states. By inverting tif¢@operators in terms Let us first consider the exact solution of the Hamiltonian

of the SCQRPA phonons according to E4.17) one obtains (2.7). In this case the wave functions of the system have a
for the transition matrix elements the general expression definite number of particles and are therefore given by the
linear superposition26]
<FM|T7|O>:YLiSikRk+VLiSikav

_xt vai _
(T, IT4]0) =X, Sy T+ Y1, SiRe. (5.2) |Z,N,v) Z=NO+2N12N=NO+2N2 Crigny, (V)

where the matribxSis defined by Eq(4.13. Let us consider % PTNOPTNlpTN2|0> 6.1)
the difference giving the Ikeda sum rule for Fermi transi- pn p o n ' :
tions,
wherePT operators are defined by E@.3) and v labels the
T |T_loy2— T |T.|0)2=C.(RR —T.T)), eigenstates given by the.dlagonallzatlon procedure. The
EM: KTuIT-10)] z,:’ KTuIT-10)] i(RR=TT) operators connecZ(N) with (ZF1N=*1).
(5.3 Of course the Ikeda sum rule is automatically fulfilled:

> (ZN,ON [ Z+IN=10)(Z+ IN= 1[Ny Z,N,0 — 2 (Z,N,0Nyo|Z— LN+ 10)(Z— LN+ 11N, Z,N,0)

=(Z,N,0/N,|Z,N,00—(Z,N,0N,|Z,N,0)=N-Z. (6.2

The energy of thepn excitation is found as the difference SCRPA energy in order to account for the true ground state
between the eigenvalues faf ¢ 1,N—1) and ¢,N) nuclei.  differences of the seniority model. We here argue that no
As mentioned in Sec. IV, we only want to consider thecorrection of any of this kind should be applied because of

pgzph component of the QRPA operator the one-dimensional approximatig¢f.3) where the compo-
nentsP], andP}, have been neglected. Indeed the latter two
FT=X7?§—YP3. (6.3 components correspond to spurious proton and neutron

states, i.e., to rotation in the gauge space as we will discuss
An important point to be discussed is whether the excitatiorbelow. In a one-dimensional cut through a Mexican hat type
energy must be corrected fa,— A\, as ussualy done in the of potential energy rotational motion is absent and then we
QRPA, in connection with the double beta dedage, e.g., also do not have to correct for it. These considerations will
Ref. [30]). Also in Ref.[15] we applied a correction to the be confirmed by the study of thex3 QRPA, presented
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below, where we include®,P},P} components. We also ST 1
will demonstrate that the one-dimensional SCQRPA is an
appropriate approximation to thex3 case except in close

vicinity of the transition point in then interaction. Only in

a rather narrow region around the phase transition does a
coupling between the three modes exist. Our procedure is a 2
straightforward generalization of then states discussed in
Refs.[16,30] where a BCS basis, which does not couple <
protons with neutrons, was used. In this case one can use the @

formulas for the SCQRPA vacuum in REBO]. One also has =
the following relations: w ]
(M =N =(N),
(N1 = (N2 =0. (6.9 I 1
The SCQRPA system of equatio@s6) becomes a nonlinear 00 — ; — ; - 3

equation to determine the eigenvalueand the amplitude

Y. The conditions for the number of particles become, in GPH/GP
this case,
FIG. 2. The exact g.s. excitation energgtashed ling the
Z‘(M QRPA (dotted ling, and the SCQRPA excitation enerpplid line)
vi,tv3,=sir a cos ¢+sirf B sir? ¢:—2(Q—</\/}) : for Gp=Gn=0.2,Fp,=0, 2=6,Z=N=4.
A.N=Z
N—(N) This case is very important because the system has exact
2 2 _ g ; ; _
Vit =sinf asir? ¢+S'n25‘3°§¢_2(9_</\/>)* g.s. stable(positive solutions for any value of the p-p

(6.5 strengthG,,. Indeed in Fig. 2 is plotted by a dashed line the
exact energy difference as a function of tag,/G,, ratio for
and allow us to express the anglesg in terms of ¢. In  the caseN=Z=4, with F,,=0. It is computed as the dif-
order to have a solution of these equations it is necessary f§rence between the ground states=(0) of the odd-odd

fulfill the condition (Z+1N—1) and even-evenN,Z) nuclei using a diagonal-
ization procedure described above. The difference is always
(My=min{Z,N,2Q — Z,2Q — N}. (6.6) positive and therefore the system is stable. This is also re-

flected by the QRPA analysis. The QRPA excitation energy

is pl in th fi line f :
By using the compatibility conditioi3.5) together with the 's plotted in the same figure by a dotted line for two cases

SCQRPA equation one expresses the Lagrange multipliers (@ Gpn<Gen, ¢=0,

Ap, A\, and the amplituder’; as functions of two independent

anglesy, ¢. The criterion to select among different solutions (0) Gpn>Gert, ¢=mlA.

is to find the constrained energy minimum of the system.

This energy is calculated as the expectation vt of the Beyond the critical pointG;/G,~1 solution (a) be-

Hamiltonian(2.12 on the SCQRPA vacuum. Our numerical comes unstabléQRPA “breaks down’), but solution(b),
analysis showed that, as in the pure BCS case, such a mintorresponding top= 7/4, becomes stable and follows the
mum is always reached fgr=0 and therefore the anglgis  trend of the exact g.s. solution. In other words beyond this
fully determined. point the pn uncoupled BCS basis with the angfe=0 is

For the interaction strengths we selected the valdgs replaced by a couplegn basis, corresponding to a “de-
=G,=0.2 andF,,/G,=0 or 1. The p-p strengte,,, as  formed” minimum in the isospin space wiih= /4. This is
usually in such a type of analysis, is taken as a free paramexactly the situation we want to clarify in this paper, i.e.,
eter on which depends the stability of the system. We alshiow the QRPA or r-QRPA passes in a continuous way
considered the degeneracy of the shell to{be6. This through the phase transition point. The QRPA excitation en-
value was considered instead©f=5 in our previous papers ergy as a function 0B, is close to the exact energy, except
because it describes a more general nonsymmptiisys-  for the region around the critical valu@,,; .

tem. We will analyze two important cases, namely, This conclusion is also confirmed by the analysis of the
mean field stability matrix
(A) N=2Z,
3—(“4” P”) 6.7
(B) N#Z. P Ayl :
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whose components j=1,2,3 are computed in the Appen- O
dix. In this case all expectation values on the standard BCS
vacuum(except(PPT)) vanish and the matrixX6.7) de-
couples into two blocks: a4 block corresponding to the
generator@T,PE and a 2x 2 block corresponding to then

P; component, whose eigenvalueg, k=1,2, are con-
nected with the QRPA frequency by the following relation:

w?=vyv,. (6.9

For the first solutiona) with ¢=0 before the critical value
of the p-p strengtlG,,,, both eigenvalues, are positive and
the system is stable. Beyond the critical valbg, v, be-
comes negative and therefore the QRPA frequency imagi-
nary, the system becoming unstable. For any value of the
Gy strength the four eigenvalues of the first block keep their
sign constant: two of them are positive and two vanish, due e
to the number of particles conservation law. The second so-
lution (b), with ¢=x/4, displays an opposite picture. For G,/G
Gpn<Gg the system is unstable: at least one of the eigen- P P
values of the stability X 2 submatrix is negative. Beyond FIG. 3. The g.s. energy of the even-even nucl@ashed ling
this point both eigenvalues are positive and the system begg the expectation value of the HamiltoniéH) given by Eq.
comes stable. (6.9) on the SCQRPA vacuuifsolid line) versus the rati®,,/G, .
Let us now consider the SCQRPA system of equationsrorG,,/G,,<1 one has @n uncoupled solution witlp=0 while
As mentioned in Sec. lll the BCS solutions should depend ofior Gpn/Gcr>1 a coupledon solution with ¢=7/4. The param-
anglesy, ¢. For y=0 one obtains a minimum of the con- eters are the same as in Fig. 2.
strainded energyH ), defined as the expectation value of the ,
Hamilonian(2.7) on the SCQRPA vacuum. In Fig. 2 is plot- WheréGet/Gp=1. The values of the anglé for solution

P ; . (b) are those in Fig. (b), corresponding to a stablpn
ted by a solid line the SCQRPA solution versus the ratlo( . .
G,./G,. As in the QRPA case one has two kinds of Solu_coupled BCS solution. The couplgxh solution (b) beyond
tiopr?s: P the critical point has a minimum with respect to the con-

strined energyH) for the angley=0.
(@) Gpn<Gcrtv ¢'=0, 4

Energy (MeV)

(b") Gpn=>Gert s @' =ml4.

A significant difference with respect to the QRPA excita-
tion energy occurs only around the critical val@,/G,
~1. It is interesting to point out that the exact g.s. energy
E.e Of the even-even systeM=Z=4, plotted in Fig. 3 by a
dashed line, is close to the g.s. SCQRPA total engdy %
(solid ling) for G, values before and after the phase transi- =
tion. This energy is defined as the expectation value of the I
Hamiltonian(2.7), but without the Lagrange multipliers

— 1 117
/

PR SR I S S TR TN N TR N S R |

~ 2
(Fy=(H)+\,Z+\,N. (6.9)
B.N#Z |
Let us consider the same set of parameters as in the pre- '40 B 1' ' ’ ; 3
vious caseG,=G,=0.2,F,,=0, =6, but with different
number of protons and neutrons, respectivély; 4, N=6. Gpn / Gp

In Fig. 4 the QRPA excitation energy is shown as a function
of the ratioG,,,/G, by a dotted line and the SCQRPA en-  FIG. 4. The SCQRPAsolid line) and QRPA(dotted ling ex-
ergy by a solid line. As in the previous case one has twaitation energy versus the rati6,,/G, for G,=G,=0.2, F,

kinds of solutions: =0,02=6,Z=4,N=6.ForG,,/G.<1 one has an uncouplexh
solution with =0 while for G,,/G.>1 a coupledpn solution
(2 Gpn<Gcrtv ¢=0, with ¢#0. The lower dashed line corresponds the the exact g.s.
energy while the upper dot-dashed line to the second eigenvalue in
(b Gp>Ger, ¢#0, the odd-odd nucleus.
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FIG. 5. The same as in Fig. 4, but fbt,,/G,=1. o

FIG. 6. Thepn excitation energy of the 83 QRPA (upper
solid ling), the corrected energy by the temm— X\, (lower solid
line), the one-component QRPA ener@jotted ling, and the first
excited exact solutiofdashed lingversus the ratiéG,, /G, for the
8ame parameters as in Fig. 4.

The lower dashed line of Fig. 4 represents the exact dif
ference of ground statesv€0) equal toE(Z+1N-1)
—E(Z,N), whereas the upper dash-dotted line stands for th
exact first excitation energy in the odd-odd1N—1)

system ¢=1). It is obvious that the QRPA interpolates be- |ine). As we see it is also very close to the eigenvalue of the
tween these two energy differences. One must realize that ”’t?ne-component QRPAdotted ling. We therefore conclude
N#Z situation is very different from thdél=Z case consid- that the one-dimensional cut through the three-dimensional
ered before. Indeed there the exact differef@+1N (rotational invariantMexican-hat-like surface, leading to the
—1)—E(Z,N) was always positive and the QRPA is there- gne-dimensional problem, yields a rather good approxima-
fore able to follow with its eigenvalue the energy differencetion_ Of course, as discussed before, no rotaﬂhngauge
for all values ofG,,. This is no longer the case for the space is possible in the one-dimensional reduction and
presentN=Z situation. Indeed the energy difference be-therefore no correction,—\,, has to be adopted in this case.
tween +1N—-1) and ¢,N) systems turns negative for This finding may hold true for other cases of spontaneous
Gpn%Gcrt- Therefore there is no pOSSIbI'Ity that the QRPA proken continuous Symmetriesy as well.
eigenvalue represents this energy differencedgy= G, in Let us now discuss the results concerning the beta decay
the pn uncoupled basis. matrix elements in the SCQRPA and exact cases. We present
If one includes the p-h interaction in the Hamiltonian in Fig. 7(a) the me’s for the exact solution of the beta decay
(2.7), the situation remains qualitatively unchanged. In Fig. SoperatorsT_ squared connecting the ground states of the
we show by a dotted line the QRPA and by a solid line theeyen-even systemz(N) to the one of the odd-odd system
SCQRPA excitation energy for the same set of parametergz+1N—1), i.e., |(Z+1N—1;0/T_|Z,N;0)|? given by
but with F,,/G,=1. One can see that the critical strengththe solid line. This transition probability is given as a func-
Gert Is shifted to the right with respect to Fig. 4. tion of the ratioG,,/G,. The dashed line in Fig.(@ rep-
Let us come back to our restriction on tRg, component  resents the SCQRPA transition me’s squafdd| T_|0)|2.
only. At least at the QRPA level it is straightforward to also We see that before the phase transition the SCQRPA repro-
include theP}, and P}, components. In addition to then  duces quite well the exact solution.
pair vibration mode we then obtain two spurious QRPA so- After the phase transition point, where tipa pairing
lutions at zero energy, corresponding to particle number vioeatches on, the SCQRPA transition probability undershoots
lation in N and Z. The uncorrectegn vibrational QRPA  the exact values quite a bit. The deterioration of the agree-
energy is shown in Fig. 6 by the upper solid line. However,ment is not unexpected, since the situation is more complex
as we argued above, in thex3 case with the spurious after the phase transition. Indeed in this region we have an
modes the rotational energy in the gauge space has to lalditional symmetry breaking whepm pairing mixes even-
corrected for when considering thn QRPA eigenvalue. even and odd-odd ground states. In analogy with the static
This means that we have to substract from this eigenvaluaonvanishing quadrupole moment of a deformed nucleus we
the difference\,—\, [30] and the resultlower solid ling here then have also a nonvanishing matrix element squared
then corresponds very closely to the exact excitation energy(0|T_|0)|? after the phase transition. We show this by the
of the first excited state in the+1N—1 system(dashed solid curve in Fig. ). In the exact case one could think that
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b T ] shown in[15]). Indeed as we already said once fhe pair-

r ] ing is nonvanishing in the region after the phase transition,
even-even and odd-odd systems become mixed and it is very
difficult to make any definite statement about transitions
from one state to the other unless one has exact particle
number projection.

Of course the Ikeda sum rule is exactly fulfilled for all
values of the p-p strengtG, .

VII. CONCLUSIONS

C ] In this paper we reanalyzed the schematic but rather gen-
1B 3 eral O5) model representing the one-level proton-neutron
] isovector pairing Hamiltonian. This Hamiltonian was used in
[ ] the past to investigate the QRPA solution in the region where
0 ——t——— the proton-neutron pair interation strend®,, is so strong
that it provokes a collapse of the QRPA. The point we
G /G wanted to exploit in this work is based on the general wis-
dom[14] that once one arrives at a collapse of the RBA
QRPA), then one has to change the single particle basis and
continue with the RPAor QRPA beyond the phase transi-
tuion point using now the “deformed” basis. In the present
case, since the collapse comes as a functio@gf, one has
to go from a BCS state which paipgp andnn states sepa-
rately to a more general BCS theory which in addition allows
for pn pairing. This is confirmed by a detailed stability study
of the BCS ground state energy. Indeed we find that working
with the more general BCS state including simultaneously
pp, nn, and pn pairing the corresponding QRPA shows a
continuous crossover from before to after the critical value of
Gpn- After the phase transition theX3@ QRPA shows two
spurious modes corresponding to the particle number break-
ing of protons and neutrons while there is one physical so-
lution corresponding to @n pair vibrational state. We also
showed that the QRPA eigenvalue has to be corrected for the
“rotational energy” in gauge space as this was advocated
long ago by Krmpoticet al. [30]. After having done this the
pn’ ~p QRPA physical eigenvalue shows indeed good agreement
with the exact solutior{Fig. 6). We also showed that once
we reduce the QRPA to the one-dimensional case, i.e., in-
cluding onlypn pairs in the RPA operator, then there is no
need for correction since we hinder the system to “rotate.”
Still, as is demonstrated in Fig. 6, the one-dimensional non-
the transition probability of the first excited std@+ 1,N corrected solution is in good agreement with the corrected
—1;1) in the odd-odd system to the ground state in thethree-dimensional solution. For the case of the SCQRPA we
even-even system could approximately follow the static motherefore restricted ourselves to the one-dimensional case,
ment(0|T _|0) in thepn deformed region. This is in analogy since the treatment of spurious motion is a delicate problem
to a B-vibration transition probability in a deformed nucleus in this extended RPA theof34]. We find that the SCQRPA
which follows the value of the static ground state quadrupolémproves the QRPA around the phase transition point. It also
moment. We therefore also show in Figby by a dashed passes in a completely continuous way from before to after
line the exact transition probability|(Z+1N—1;v the critical point. The results for the-transition matrix ele-
=1|T_|Z,N;»=0)|2. We see that there is indeed an obviousments are more delicate to interpret. Before the crit@g|
correspondence between the two lines in Fidp) T spite of  there is no problem and the various RPA results agree rea-
the fact that detailed agreement is seen to be only of a qualsonably well with the exact solution. However, after the tran-
tative nature. sition point the agreement is of a qualitative nature only. We
This probably stems from the fact that particle number isattribute this to the fact that in the region wiin pairing
not a conserved quantity in our approagiesides the fact even-even and odd-odd systems become mixed and therefore
that the quantal fluctuation contained in the SCQRPA ardt is very difficult to attributeB-transition matrix elements of
able to restore particle number symmetry to a large extent, dbe QRPA(or SCQRPA to any transition between definite

FIG. 7. (@ The beta decay matrix elements squaj&g+ 1,N
—1,0T_|Z,N,0)|? (solid line), |{I'|T_|0)|? (dashed ling (b) The
beta decay matrix elements squafé@|T_|0)|? (solid line), |(Z
+1N-1,1T_|Z,N,0)|? (dashed ling
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states of the exact solution. Any further progress is thereforelusion of the isoscalar pairing within the(& model will
probably only possible once one gets number projection uncomplete our analysis.
der firm control.
We stress the fact that the Ikeda sum rule is fulfilled in the ACKNOWLEDGMENTS
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APPENDIX

In order to derive the SCQRPA matrices for the generators given by(E@slet us introduce for the double commutators
the notation

[P, [Py, Pill= — chaliPa= —dfj Pa,
([P P11, P1=—d5PL,
T i a b i a (Al)
[P, [N, P ]]=bj— ai,bpNa=Dj— €/ Na,
[P N1 Pil=cff — agciNa=cij — fjNa.
The labels we used here are for pair indices1=(1,1), 2=(2,2), 3=(1,2), 4=(2,1) for \; andi=1=(1,1), 2=(2,2),
3=(1,2) for P, operators. The terms in the Hamiltoni&®.12 giving the contribution for the double commutators are

H1LH?2 H%. For symmetrized double commutatdi38], giving the QRPA matrices for the pair indicég=1,2,3, one
obtains the following relations:

1 : .
Aij E<[,Pi ,H rp;r]> :E En[blnj + C{n - (eﬁu‘ + f?nj)<Na>] + hizjz_ (hrznzjaiam+ hi2r12aﬁija> + hrznzna?magj<NaNb>
1 1 . . . :
= S (A (P Ba) + A (P APa)) & 5 Gl (B + Clo) (Vi) + (b ) (N — (€1 + £ (NG NG) — (€ + i)
1
><</\/‘a/\/‘n> + ZC?mbng)aPD + Zb%jcibnujlpbﬂ - E hﬁon[dizir]j<7)m7)a> + d?mj<7)a7>n> + d?ni<73;rn7);> + djami<7?;7?g>]v (AZ)

1
Bij=—([Pi H.P;])= i+ hiP— = (o + dfim) (PaPn) = (i, + himai + himag, + hitaf) (Aa) + hot (af,a, + afar,)

1
b b
X(NaNb) = 5 ol (i + i) (P 1Pa) + (i + i) (PaP ) 1+ e CiraCin + CinCin)(PaPo)- (A3)
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