178 research outputs found

    Practical guidelines for modelling post-entry spread in invasion ecology

    Get PDF
    In this article we review a variety of methods to enable understanding and modelling the spread of a pest or pathogen post-entry. Building upon our experience of multidisciplinary research in this area, we propose practical guidelines and a framework for model development, to help with the application of mathematical modelling in the field of invasion ecology for post-entry spread. We evaluate the pros and cons of a range of methods, including references to examples of the methods in practice. We also show how issues of data deficiency and uncertainty can be addressed. The aim is to provide guidance to the reader on the most suitable elements to include in a model of post-entry dispersal in a risk assessment, under differing circumstances. We identify both the strengths and weaknesses of different methods and their application as part of a holistic, multidisciplinary approach to biosecurity research

    Individual-based modelling of moth dispersal to improve biosecurity incursion response

    Full text link
    1. Some biosecurity systems aimed at reducing the impacts of invasive alien species that employ sentinel trapping systems to detect the presence of unwanted organisms. Once detected, the next challenge is to locate the source population of the invasive species. Tools that can direct search efforts towards the most likely sources of a trapped invasive alien species can improve the chance of rapidly delimiting and eradicating the local population and may help to identify the original introduction pathway. Ground-based detection and delimitation surveys can be very expensive, and methods to focus search efforts to those areas most likely to contain the target organisms can make these efforts more effective and efficient. 2. An individual-based semi-mechanistic model was developed to simulate the spatio-temporal dispersal patterns of an invasive moth. The model combines appetitive and pheromone anemotaxis behaviours in response towind, temperature and pheromone conditions. The modelwas trained using data from a series ofmark-release-recapture experiments on painted applemoth Teia anartoides. 3. The model was used to create hindcast simulations by reversing the time course of environmental conditions. The ability of the model to encompass the release location was evaluated using individual trap locations as starting points for the hindcast simulations. 4. The hindcast modelling generated a pattern of moth flights that successfully encompassed the origin from 86%of trap locations, representing 95%of the 1464 recaptures observed in the mark- release-recapture experiments. 5. Comparing the guided search area defined using the hindcast model with the area of a simple point-diffusion search strategy revealed an optimized search strategy that combined searching a circle of 1 km radius around the trap followed by the area indicated by hindcast model predictions. 6. Synthesis and applications. Incorporating this novel moth dispersal model into biosecurity sentinel systems will allow incursion managers to direct search effort for the proximal source of the incursion towards those areas most likely to contain a local infestation. Such targeted effort should reduce the costs and time taken to detect the proximal source of an incursion. (Résumé d'auteur

    An assessment of the benefits of yellow Sigatoka (Mycosphaerella musicola) control in the Queensland Northern Banana Pest Quarantine Area

    Get PDF
    The banana leaf spotting disease yellow Sigatoka is established and actively controlled in Australia through intensive chemical treatments and diseased leaf removal. In the State of Queensland, the State government imposes standards for de-leafing to minimise the risk of the disease spreading in 6 banana pest quarantine areas. Of these, the Northern Banana Pest Quarantine Area is the most significant in terms of banana production. Previous regulations imposed obligations on owners of banana plants within this area to remove leaves from plants with visible spotting on more than 15 per cent of any leaf during the wet season. Recently, this leaf disease threshold has been lowered to 5 per cent. In this paper we examine the likely impact this more-costly regulation will have on the spread of the disease. We estimate that the average net benefit of reducing the diseased leaf threshold is only likely to be $1.4 million per year over the next 30 years, expressed as the annualised present value of tightened regulation. This result varies substantially when the timeframe of the analysis is changed, with shorter time frames indicating poorer net returns from the change in protocols. Overall, the benefit of the regulation change is likely to be minor

    Invasive alien species in the food chain : advancing risk assessment models to address climate change, economics and uncertainty

    Get PDF
    Economic globalization depends on the movement of people and goods between countries. As these exchanges increase, so does the potential for translocation of harmful pests, weeds, and pathogens capable of impacting our crops, livestock and natural resources (Hulme 2009), with concomitant impacts on global food security (Cook et al. 2011)

    Potential distribution and biosecurity risks from three economically important plant - parasitic nematodes

    Get PDF
    The plant-parasitic nematodes (PPNs), Heterodera zeae, Hirschmanniella oryzae and Meloidogyne graminicola, are economically important pests of major grain crops. Each of these species is still absent from the majority of countries, so there is great concern about their spread. However, the areas particularly at risk of invasion and the potential global distributions of these nematode pests are yet to be identified. This paper identifies these areas, together with the main factors that could facilitate establishment in new areas using CLIMEX models. Parameterised using published studies of species phenology and global species distributions, the models correctly identified the areas invaded recently by M. graminicola and H. zeae. The vast majority of the areas of the world under wheat, rice and maize were identified as suitable for the nematodes. The nematodes are not yet established in many of these areas, suggesting that biosecurity measures may be particularly warranted to prevent the spread of these species to the new suitable areas identified. Intensive cropping systems under irrigation were identified as being at much greater risk than rain-fed cropping systems. The potential detrimental effects from introduction and local spread of PPNs in irrigation water could undermine suggested potential gains from using irrigation to increase world food production and meet increasing demand. These results mean that biosecurity measures for PPNs are justified

    Integrating pest population models with biophysical crop models to better represent the farming system

    Get PDF
    Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework

    Integrating pest population models with biophysical crop models to better represent the farming system

    Get PDF
    Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework

    Protected agriculture matters: Year-round persistence of Tuta absoluta in China where it should not

    Get PDF
    Tuta absoluta (Lepidoptera: Gelechiidae) originates from the South American tropics but has become a major invasive pest of tomato and other Solanaceae crops worldwide. Agricultural protected facilities (APFs) such as greenhouses and plastic tunnels may provide thermal conditions that allow the survival of T. absoluta in temperate zones with cold winters. In this study, a CLIMEX model was used to investigate the dual effects of increasing use of APFs and climate warming on the potential distribution and seasonal dynamics of T. absoluta in China. Our model showed that the northern boundary for year-round population persistence in China, ignoring APFs, was approximately 30°N, covering about 21% of China’s area suitable under current climate. The modelled suitable area increased to 31% and northern boundary for year-round population persistence shifted to 40°N in 2080 under global warming. When APF refuges are included, the potential suitable area was 78% under the current climate and 79% under global warming. This suggests that, in the future, the increasing use of APFs will increase the areas at risk of T. absoluta invasion significantly more than global warming because APFs effectively protect T. absoluta from harsh northern winters. In addition, vegetable production in surrounding open fields will be at risk of invasion during milder seasons when APFs are opened and T. absoluta can disperse. Therefore, the micro-climate of APFs should be considered as part of the invasion process, and Integrated Pest Management should be simultaneously implemented inside and outside APFs for the rational management T. absoluta.This work was supported by National Key R&D program of China (2021YFD1400200). CERCA Program / Generalitat de Catalunya provided funding to JA, and ND was funded in part by the Horizon Europe project ADOPT-IPM (n◦101060430).info:eu-repo/semantics/publishedVersio

    The potential distribution of Bactrocera dorsalis: Considering phenology and irrigation patterns

    Full text link
    A species in the Bactrocera dorsalis (Hendel) complex was detected in Kenya during 2003 and classified as Bactrocera invadens Drew, Tsuruta & White. Having spread rapidly throughout Africa, it threatens agriculture due to crop damage and loss of market access. In a recent revision of the B. dorsalis complex, B. invadens was incorporated into the species B. dorsalis. The potential distribution of B. dorsalis has been previously modelled. However, previous models were based on presence data and did not incorporate information on the seasonal phenology of B. dorsalis, nor on the possible influence that irrigation may have on its distribution. Methyl eugenol-baited traps were used to collect B. dorsalis in Africa. Seasonal phenology data, measured as fly abundance throughout the year, was related to each location's climate to infer climatic growth response parameters. These functions were used along with African distribution records and development studies to fit the niche model for B. dorsalis, using independent global distribution records outside Africa for model validation. Areas at greatest risk of invasion by B. dorsalis are South and Central America, Mexico, southernmost USA, parts of the Mediterranean coast, parts of Southern and Eastern Australia and New Zealand's North Island. Under irrigation, most of Africa and Australia appear climatically suitable. (Résumé d'auteur

    Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L

    Get PDF
    The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios
    • …
    corecore