3 research outputs found

    Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials

    No full text
    Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH3, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 ppm-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.Bio4Energ

    Gas phase synthesis of isopropyl chloride from isopropanol and HCl over alumina and flexible 3-D carbon foam supported catalysts

    No full text
    Abstract Isopropyl chloride synthesis from isopropanol and HCl in gas phase over ZnCl₂ catalysts supported on Al₂O₃ as well as flexible carbon foam was studied in a continuous reactor. A series of catalytic materials were synthesised and characterised by BET, XPS, SEM, TEM, XRD and NH₃-TPD methods. Catalytic activity tests (product selectivity and conversion of reactants) were performed for all materials and optimal reaction conditions (temperature and feedstock flow rates) were found. The results indicate that the highest yield of isopropyl chloride was obtained over 5 wt.% ZnCl₂ on commercial Al₂O₃ (No. II) (95.3%). Determination of product mixture compositions and by-product identification were done using a GC-MS method. Carbon foam variant catalyst, 5 wt.% ZnCl₂/C, was found to perform best out of the carbon-supported materials, achieving ∼75% yield of isopropyl chloride. The kinetic model describing the process in a continuous packed bed reactor was proposed and kinetic parameters were calculated. The activation energy for the formation of isopropyl chloride reaction directly from isopropanol and HCl was found to be ∼58 kJ/mol
    corecore