Gas phase synthesis of isopropyl chloride from isopropanol and HCl over alumina and flexible 3-D carbon foam supported catalysts

Abstract

Abstract Isopropyl chloride synthesis from isopropanol and HCl in gas phase over ZnCl₂ catalysts supported on Al₂O₃ as well as flexible carbon foam was studied in a continuous reactor. A series of catalytic materials were synthesised and characterised by BET, XPS, SEM, TEM, XRD and NH₃-TPD methods. Catalytic activity tests (product selectivity and conversion of reactants) were performed for all materials and optimal reaction conditions (temperature and feedstock flow rates) were found. The results indicate that the highest yield of isopropyl chloride was obtained over 5 wt.% ZnCl₂ on commercial Al₂O₃ (No. II) (95.3%). Determination of product mixture compositions and by-product identification were done using a GC-MS method. Carbon foam variant catalyst, 5 wt.% ZnCl₂/C, was found to perform best out of the carbon-supported materials, achieving ∼75% yield of isopropyl chloride. The kinetic model describing the process in a continuous packed bed reactor was proposed and kinetic parameters were calculated. The activation energy for the formation of isopropyl chloride reaction directly from isopropanol and HCl was found to be ∼58 kJ/mol

    Similar works

    Full text

    thumbnail-image