53 research outputs found

    Genetic Risk for Alzheimer\u27s Disease Alters the Five-Year Trajectory of Semantic Memory Activation in Cognitively Intact Elders

    Get PDF
    Healthy aging is associated with cognitive declines typically accompanied by increased task-related brain activity in comparison to younger counterparts. The Scaffolding Theory of Aging and Cognition (STAC) (Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Park, 2014) posits that compensatory brain processes are responsible for maintaining normal cognitive performance in older adults, despite accumulation of aging-related neural damage. Cross-sectional studies indicate that cognitively intact elders at genetic risk for Alzheimer\u27s disease (AD) demonstrate patterns of increased brain activity compared to low risk elders, suggesting that compensation represents an early response to AD-associated pathology. Whether this compensatory response persists or declines with the onset of cognitive impairment can only be addressed using a longitudinal design. The current prospective, 5-year longitudinal study examined brain activation in APOE Δ4 carriers (N = 24) and non-carriers (N = 21). All participants, ages 65–85 and cognitively intact at study entry, underwent task-activated fMRI, structural MRI, and neuropsychological assessments at baseline, 18, and 57 months. fMRI activation was measured in response to a semantic memory task requiring participants to discriminate famous from non-famous names. Results indicated that the trajectory of change in brain activation while performing this semantic memory task differed between APOE Δ4 carriers and non-carriers. The APOE Δ4 group exhibited greater activation than the Low Risk group at baseline, but they subsequently showed a progressive decline in activation during the follow-up periods with corresponding emergence of episodic memory loss and hippocampal atrophy. In contrast, the non-carriers demonstrated a gradual increase in activation over the 5-year period. Our results are consistent with the STAC model by demonstrating that compensation varies with the severity of underlying neural damage and can be exhausted with the onset of cognitive symptoms and increased structural brain pathology. Our fMRI results could not be attributed to changes in task performance, group differences in cerebral perfusion, or regional cortical atrophy

    Characterization of degeneration in the retina, brain and spinal cord of the Cln1 knockout mouse

    Get PDF
    Abstract only availableThe neuronal-ceroid lipofuscinoses (NCLs; often referred to as Battens Disease) are a group of hereditary disorders of childhood. Symptoms of NCLs are characterized by neurodegeneration with progressive neural cell death in the retina and central nervous system (CNS). The infantile form of NCL results from a deficiency in the protein, palmitoyl protein thioesterase-1 (PPT-1). PPT-1, encoded by the Cln1 gene, removes long chain fatty acids from modified cysteine residues in proteins. Mutations in the Cln1 gene are associated with an accumulation of autofluorescent lysosomal lipopigments in various tissues such as the retina and CNS. In the current study, we use a transgenic mouse model in which the gene for Cln1 has been mutated, i.e., 'knocked out'. Our goal is to perform histological experiments to assess the functional progression of neurodegenerative changes in the retina, brain and spinal cord as the subject ages. The retina, brain and spinal cord of the mice at different ages were fixed and embedded in plastic resin and/or paraffin. Thick sections (1 mm or 10 mm, respectively) were stained with toluidine blue or propidium iodide to detect neuronal loss and/or apoptosis as a result of the PPT-1 deficiency. Fluorescent images of the stained sections were obtained to document changes in tissue structure and the extent of degeneration. These studies provide information that will aid future studies in which stem cell transplants will be made into the Cln1 knockout mouse model. Ultimately, this approach will determine whether combined gene and stem cell therapies can be applied to patients with Battens Disease.Molecular Biology Progra

    Essential Role of Cdc42 in Ras-Induced Transformation Revealed by Gene Targeting

    Get PDF
    The ras proto-oncogene is one of the most frequently mutated genes in human cancer. However, given the prevalence of activating mutations in Ras and its association with aggressive forms of cancer, attempts to therapeutically target aberrant Ras signaling have been largely disappointing. This lack of progress highlights the deficiency in our understanding of cellular pathways required for Ras-mediated tumorigenesis and suggests the importance of identifying new molecular pathways associated with Ras-driven malignancies. Cdc42 is a Ras-related small GTPase that is known to play roles in oncogenic processes such as cell growth, survival, invasion, and migration. A pan-dominant negative mutant overexpression approach to suppress Cdc42 and related pathways has previously shown a requirement for Cdc42 in Ras-induced anchorage-independent cell growth, however the lack of specificity of such approaches make it difficult to determine if effects are directly related to changes in Cdc42 activity or other Rho family members. Therefore, in order to directly and unambiguously address the role of Cdc42 in Ras-mediated transformation, tumor formation and maintenance, we have developed a model of conditional cdc42 gene in Ras-transformed cells. Loss of Cdc42 drastically alters the cell morphology and inhibits proliferation, cell cycle progression and tumorigenicity of Ras-transformed cells, while non-transformed cells or c-Myc transformed cells are largely unaffected. The loss of Cdc42 in Ras-transformed cells results in reduced Akt signaling, restoration of which could partially rescues the proliferation defects associated with Cdc42 loss. Moreover, disruption of Cdc42 function in established tumors inhibited continued tumor growth. These studies implicate Cdc42 in Ras-driven tumor growth and suggest that targeting Cdc42 is beneficial in Ras-mediated malignancies

    Association between depression, anxiety and weight change in young adults

    Get PDF
    Background To investigate whether there are bi-directional associations between anxiety and mood disorders and body mass index (BMI) in a cohort of young adults. Methods We analysed data from the 2004–2006 (baseline) and 2009–2011 (follow-up) waves of the Childhood Determinants of Adult Health study. Lifetime DSM-IV anxiety and mood disorders were retrospectively diagnosed with the Composite International Diagnostic Interview. Potential mediators were individually added to the base models to assess their potential role as a mediator of the associations. Results In males, presence of mood disorder history at baseline was positively associated with BMI gain (ÎČ = 0.77, 95% CI: 0.14–1.40), but baseline BMI was not associated with subsequent risk of mood disorder. Further adjustment for covariates, including dietary pattern, physical activity, and smoking reduced the coefficient (ÎČ) to 0.70 (95% CI: 0.01–1.39), suggesting that the increase in BMI was partly mediated by these factors. In females, presence of mood disorder history at baseline was not associated with subsequent weight gain, however, BMI at baseline was associated with higher risk of episode of mood disorder (RR per kg/m2: 1.04, 95% CI: 1.01–1.08), which was strengthened (RR per kg/m2 = 1.07, 95% CI: 1.00–1.15) after additional adjustment in the full model. There was no significant association between anxiety and change in BMI and vice-versa. Conclusion The results do not suggest bidirectional associations between anxiety and mood disorders, and change in BMI. Interventions promoting healthy lifestyle could contribute to reducing increase in BMI associated with mood disorder in males, and excess risk of mood disorder associated with BMI in females

    Renal nerves contribute to hypertension in Schlager BPH/2J mice

    Get PDF
    Schlager mice (BPH/2J) are hypertensive due to a greater contribution of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS). The kidneys of BPH/2J are hyper-innervated suggesting renal nerves may contribute to the hypertension. We therefore determined the effect of bilateral renal denervation (RD) on hypertension in BPH/2J. Mean arterial pressure (MAP) was measured by radiotelemetry before and for 3 weeks after RD in BPH/2J and BPN/3J. The effects of pentolinium and enalaprilat were examined to determine the contribution of the SNS and RAS, respectively. After 3 weeks, MAP was −10.9 ± 2.1 mmHg lower in RD BPH/2J compared to baseline and −2.1 ± 2.2 mmHg in sham BPH/2J (P < 0.001, n = 8–10). RD had no effect in BPN/3J (P > 0.1). The depressor response to pentolinium was greater in BPH/2J than BPN/3J, but in both cases the response in RD mice was similar to sham. Enalaprilat decreased MAP more in RD BPH/2J compared to sham (−12 vs −3 mmHg, P < 0.001) but had no effect in BPN/3J. RD reduced renal noradrenaline in both strains but more so in BPH/2J. RD reduced renin mRNA and protein, but not plasma renin in BPH/2J to levels comparable with BPN/3J mice. We conclude that renal nerves contribute to hypertension in BPH mice as RD induced a sustained fall in MAP, which was associated with a reduction of intrarenal renin expression. The lack of inhibition of the depressor effects of pentolinium and enalaprilat by RD suggests that vasoconstrictor effects of the SNS or RAS are not involved

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Acute Effect of Central Administration of Urotensin II on Baroreflex and Blood Pressure in Conscious Normotensive Rabbits

    No full text
    In the present study, we examined the effects of central administration of Urotensin II on blood pressure, heart rate, and baroreceptor heart rate reflexes in conscious normotensive rabbits. Preliminary operations were undertaken to implant a balloon cuff on the inferior vena cava for baroreflex assessments and to implant cannula into the lateral and fourth ventricle. After 2 weeks of recovery cumulative dose response curves to Urotensin II (10, 100 ng, 1, 10, and 100 ÎŒg) given into the ventricles, or Ringer's solution as a vehicle were performed on separate days. Injections were given each hour and baroreflex assessments were made 30 min after each administration. Analysis of the dose response curves to Urotensin II compared to vehicle administered into the lateral or fourth ventricle, indicated little change to blood pressure or heart rate. Analysis of the time course to the highest dose over a 30 min period revealed a small (−5 mmHg) depressor response maximal at 10 min when injected into the fourth ventricle but no effect when injected into the lateral ventricle. Baroreflex assessments made at each dose showed that there was no change in baroreflex sensitivity but that an increase in the upper plateau was observed when Urotensin was injected into the lateral ventricle and a tendency for a reduced lower heart rate plateau was observed after fourth ventricle administration. Clonidine administration in the fourth ventricle decreased blood pressure and heart rate, thus confirming catheter patency. In conclusion, our findings suggest that Urotensin II in the forebrain and brainstem may play a role in modulating cardiac sympathetic and vagal baroreflexes but only during large acute changes in blood pressure

    The Effects of Rilmenidine and Perindopril on Arousal Blood Pressure during 24 Hour Recordings in SHR

    No full text
    <div><p>The surge in arterial pressure during arousal in the waking period is thought to be largely due to activation of the sympathetic nervous system. In this study we compared in SHR the effects of chronic administration of the centrally acting sympatholytic agent rilmenidine with an angiotensin converting enzyme inhibitor perindopril on the rate of rise and power of the surge in mean arterial pressure (MAP) that occurs with arousal associated with the onset of night. Recordings were made using radiotelemetry in 17 adult SHR before and after treatment with rilmenidine (2mg/kg/day), perindopril (1mg/kg/day) or vehicle in the drinking water for 2 weeks. Rilmenidine reduced MAP by 7.2 ± 1.7mmHg while perindopril reduced MAP by 19 ± 3mmHg. Double logistic curve fit analysis showed that the rate and power of increase in systolic pressure during the transition from light to dark was reduced by 50% and 65%, respectively, but had no effect on diastolic pressure. Rilmenidine also reduced blood pressure variability in the autonomic frequency in the active period as assessed by spectral analysis which is consistent with reduction in sympathetic nervous system activity. Perindopril had no effect on the rate or power of the arousal surge in either systolic or diastolic pressure. These results suggest that the arousal induced surge in blood pressure can largely be reduced by an antihypertensive agent that inhibits the sympathetic nervous system and that angiotensin converting enzyme inhibition, while effective in reducing blood pressure, does not alter the rate or power of the surge associated with arousal.</p></div
    • 

    corecore