12 research outputs found

    Deviations from a uniform period spacing of gravity modes in a massive star

    Full text link
    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.Peer reviewe

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo

    No full text
    International audienceMicroglia are the immune cells of the central nervous system. They are suspected to play important roles in adult synaptogenesis and in the development of the neuronal network. Microglial cells originate from progenitors in the yolk sac. Although it was suggested that they invade the cortex at early developmental stages in the embryo, their invasion pattern remains largely unknown. To address this issue we analyzed the pattern of cortical invasion by microglial cells in mouse embryos at the onset of neuronal cell migration using in vivo immunohistochemistry and ex vivo time-lapse analysis of microglial cells. Microglial cells begin to invade the cortex at 11.5 days of embryonic age (E11.5). They first accumulate at the pial surface and within the lateral ventricles, after which they spread throughout the cortical wall, avoiding the cortical plate region in later embryonic ages. The invasion of the cortical parenchyma occurs in different phases. First, there is a gradual increase of microglial cells between E10.5 and E14.5. From E14.5 to E15.5 there is a rapid phase with a massive increase in microglia, followed by a slow phase again from E15.5 until E17.5. At early stages, many peripheral microglia are actively proliferating before entering the parenchyma. Remarkably, activated microglia accumulate in the choroid plexus primordium, where they are in the proximity of dying cells. Time-lapse analysis shows that embryonic microglia are highly dynamic cells

    Amorphous carbon in the disk around the post-AGB binary HR 4049. Discerning dust species with featureless opacity curves

    No full text
    Context. Infrared spectroscopy has been extensively used to determine the mineralogy of circumstellar dust. The identification of dust species with featureless opacities, however, is still ambiguous. Here we present a method to lift the degeneracy using the combination of infrared spectroscopy and interferometry. Aims. The binary post-AGB star HR 4049 is surrounded by a circumbinary disk viewed at a high inclination angle. Apart from gaseous emission lines and molecular emission bands of polycyclic aromatic hydrocarbons (PAH), diamonds, and fullerenes, the 2–25 μm in- frared spectrum is featureless. The goal of the paper is to identify the dust species responsible for the smooth spectrum. Methods. We gathered high-angular-resolution measurements in the near- and mid-infrared with the VLTI interferometric instru- ments AMBER and MIDI. The data set is expanded with archival Geneva optical photometry, ISO-SWS and Spitzer-IRS infrared spectroscopy, and VISIR N-band images and spectroscopy. We computed a grid of radiative-transfer models of the circumbinary disk of HR 4049 using the radiative-transfer code MCMax. We searched for models that provide good fits simultaneously to all available observations. Results. We find that the variable optical extinction towards the primary star is consistent with the presence of very small (0.01 μm) iron-bearing dust grains or amorphous carbon grains. The combination of the interferometric constraint on the disk extent and the shape of the infrared spectrum points to amorphous carbon as the dominant source of opacity in the circumbinary disk of HR 4049. The disk is optically thick to the stellar radiation in the radial direction. At infrared wavelengths it is optically thin. The PAH emis- sion is spatially resolved in the VISIR data and emanates from a region with an extent of several hundreds of AU, with a projected photocenter displacement of several tens of AU from the disk center. The PAHs most likely reside in a bipolar outflow. Conclusions. Dust species with featureless opacity curves, such as metallic iron and amorphous carbon, can be identified by combin- ing infrared spectroscopy and high-angular-resolution measurements. In essence, this is because the temperatures of the dust species are notably different at the same physical distance to the star.status: publishe

    Glycine enhances microglial intracellular calcium signaling : a role for sodium-coupled neutral amino acid transporters

    No full text
    The inhibitory neurotransmitter glycine is known to enhance microglial nitric oxide production. However, up to now, the mechanism is undocumented. Since calcium is an important second messenger in both immune and glial cells, we studied the effects of glycine on intracellular calcium signaling. We found that millimolar concentrations of glycine enhance microglial intracellular calcium transients induced by 100 mu M ATP or by 500 nM thapsigargin. This modulation was unaffected by the glycine receptor antagonist strychnine and could not be mimicked by glycine receptor agonists such as taurine or beta-alanine, indicating glycine receptor independency. The modulation of calcium responses could be mimicked by several structurally related amino acids (e.g., serine, alanine, or glutamine) and was inhibited in the presence of the neutral amino acid transporter substrate alpha-aminoisobutyric acid (AIB). We correlated these findings to immunofluorescence glycine uptake experiments which showed a clear glycine uptake which was inhibited by AIB. Furthermore, all amino acids that were shown to modulate calcium responses also evoked AIB-sensitive inward currents, mainly carried by sodium, as demonstrated by patch clamp experiments. Based on these findings, we propose that sodium-coupled neutral amino acid transporters are responsible for the observed glycine modulation of intracellular calcium responses

    CoRoT high-precision photometry of the B0.5 IV star HD 51756

    No full text
    International audienceContext. OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current evolutionary models. Aims: Our goal is to analyse and interpret the behaviour present in the CoRoT light curve of the B0.5 IV star HD 51756 observed during the second long run of the space mission and to determine the fundamental stellar parameters from ground-based spectroscopy gathered with the Coralie and Harps instruments after checking for signs of variability and binarity, thus making a step further in mapping the top of the beta Cep instability strip. Methods: We compared the newly obtained high-resolution spectra with synthetic spectra of late O-type and early B-type stars computed on a grid of stellar parameters. We matched the results with evolutionary tracks to estimate stellar parameters. We used various time series analysis tools to explore the nature of the variations present in the light curve. Additional calculations were carried out based on distance and historical position measurements of the components to impose constraints on the binary orbit. Results: We find that HD 51756 is a wide binary with both a slow (vsini &ap; 28 km s-1) and a fast (vsini &ap; 170 km s-1) early-B rotator whose atmospheric parameters are similar (Teff &ap; 30 000 K and log g &ap; 3.75). We are unable to detect pulsation in any of the components, and we interpret the harmonic structure in the frequency spectrum as a sign of rotational modulation, which is compatible with the observed and deduced stellar parameters of both components. Conclusions: The non-detection of pulsation modes provides a feedback on the theoretical treatment, given that non-adiabatic computations applied to appropriate stellar models predict the excitation of both pressure and gravity modes for the fundamental parameters of this star

    An asteroseismic study of the O9V star HD 46202 from CoRoT space-based photometry

    No full text
    International audienceThe O9V star HD 46202, which is a member of the young open cluster NGC 2244, was observed by the CoRoT satellite in October/November 2008 during a short run of 34 days. From the very high-precision light curve, we clearly detect beta Cep-like pulsation frequencies with amplitudes of ~0.1 mmag and below. A comparison with stellar models was performed using a chi2 as a measure for the goodness-of-fit between the observed and theoretically computed frequencies. The physical parameters of our best-fitting models are compatible with the ones deduced spectroscopically. A core overshooting parameter alphaov = 0.10 ± 0.05 pressure scale height is required. None of the observed frequencies are theoretically excited with the input physics used in our study. More theoretical work is thus needed to overcome this shortcoming in how we understand the excitation mechanism of pulsation modes in such a massive star. A similar excitation problem has also been encountered for certain pulsation modes in beta Cep stars recently modelled asteroseismically

    Detection of frequency spacings in the young O-type binary HD 46149 from CoRoT photometry

    No full text
    International audience Aims: Using the CoRoT space based photometry of the O-type binary HD 46149, stellar atmospheric effects related to rotation can be separated from pulsations, because they leave distinct signatures in the light curve. This offers the possibility of characterising and exploiting any pulsations seismologically. Methods: Combining high-quality space based photometry, multi-wavelength photometry, spectroscopy and constraints imposed by binarity and cluster membership, the detected pulsations in HD 46149 are analyzed and compared with those for a grid of stellar evolutionary models in a proof-of-concept approach. Results: We present evidence of solar-like oscillations in a massive O-type star, and show that the observed frequency range and spacings are compatible with theoretical predictions. Thus, we unlock and confirm the strong potential of this seismically unexplored region in the HR diagram

    The orbits of subdwarf B plus main-sequence binaries I. The sdB+G0 system PG 1104+243

    No full text
    Context. The predicted orbital period histogram of a subdwarf B (sdB) population is bimodal with a peak at short (250 days) periods. Observationally, however, there are many short-period sdB systems known, but only very few long-period sdB binaries are identified. As these predictions are based on poorly understood binary interaction processes, it is of prime importance to confront the predictions to well constrained observational data. We therefore initiated a monitoring program to find and characterize long-period sdB stars. Aims: In this contribution we aim to determine the absolute dimensions of the long-period binary system PG 1104+243 consisting of an sdB and a main-sequence (MS) component, and determine its evolution history. Methods: High-resolution spectroscopy time-series were obtained with HERMES at the Mercator telescope at La Palma, and analyzed to determine the radial velocities of both the sdB and MS components. Photometry from the literature was used to construct the spectral energy distribution (SED) of the binary. Atmosphere models were used to fit this SED and determine the surface gravity and temperature of both components. The gravitational redshift provided an independent confirmation of the surface gravity of the sdB component. Results: An orbital period of 753 ± 3 d and a mass ratio of q = 0.637 ± 0.015 were found for PG 1104+243 from the radial velocity curves. The sdB component has an effective temperature of Teff = 33 500 ± 1200 K and a surface gravity of log g = 5.84 ± 0.08 dex, while the cool companion is found to be a G-type star with Teff = 5930 ± 160 K and log g = 4.29 ± 0.05 dex. When a canonical mass of MsdB = 0.47 M⊙ is assumed, the MS component has a mass of MMS = 0.74 ± 0.07 M⊙, and its temperature corresponds to what is expected for a terminal age main-sequence star with sub-solar metalicity. Conclusions: PG 1104+243 is the first long-period sdB binary in which accurate and consistent physical parameters of both components could be determined, and the first sdB binary in which the gravitational redshift is measured. Furthermore, PG 1104+243 is the first sdB+MS system that shows consistent evidence for being formed through stable Roche-lobe overflow. An analysis of a larger sample of long-period sdB binaries will allow for the refinement of several essential parameters in the current formation channels.Accepted by A&A on 05-10-2012status: publishe
    corecore