10 research outputs found

    Cell-specific transcriptome changes in the hypothalamic arcuate nucleus in a mouse deoxycorticosterone acetate-salt model of hypertension

    Get PDF
    A common preclinical model of hypertension characterized by low circulating renin is the “deoxycorticosterone acetate (DOCA)-salt” model, which influences blood pressure and metabolism through mechanisms involving the angiotensin II type 1 receptor (AT1R) in the brain. More specifically, AT1R within Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) has been implicated in selected effects of DOCA-salt. In addition, microglia have been implicated in the cerebrovascular effects of DOCA-salt and angiotensin II. To characterize DOCA-salt effects upon the transcriptomes of individual cell types within the ARC, we used single-nucleus RNA sequencing (snRNAseq) to examine this region from male C57BL/6J mice that underwent sham or DOCA-salt treatment. Thirty-two unique primary cell type clusters were identified. Sub-clustering of neuropeptide-related clusters resulted in identification of three distinct AgRP subclusters. DOCA-salt treatment caused subtype-specific changes in gene expression patterns associated with AT1R and G protein signaling, neurotransmitter uptake, synapse functions, and hormone secretion. In addition, two primary cell type clusters were identified as resting versus activated microglia, and multiple distinct subtypes of activated microglia were suggested by sub-cluster analysis. While DOCA-salt had no overall effect on total microglial density within the ARC, DOCA-salt appeared to cause a redistribution of the relative abundance of activated microglia subtypes. These data provide novel insights into cell-specific molecular changes occurring within the ARC during DOCA-salt treatment, and prompt increased investigation of the physiological and pathophysiological significance of distinct subtypes of neuronal and glial cell types

    FGF21 Signals to Glutamatergic Neurons in the Ventromedial Hypothalamus to Suppress Carbohydrate Intake

    No full text
    Fibroblast growth factor 21 (FGF21) is an endocrine hormone produced by the liver that regulates nutrient and metabolic homeostasis. FGF21 production is increased in response to macronutrient imbalance and signals to the brain to suppress sugar intake and sweet-taste preference. However, the central targets mediating these effects have been unclear. Here, we identify FGF21 target cells in the hypothalamus and reveal that FGF21 signaling to glutamatergic neurons is both necessary and sufficient to mediate FGF21-induced sugar suppression and sweet-taste preference. Moreover, we show that FGF21 acts directly in the ventromedial hypothalamus (VMH) to specifically regulate sucrose intake but not non-nutritive sweet-taste preference, body weight or energy expenditure. Finally, our data demonstrates that FGF21 affects neuronal activity by increasing activation and excitability of neurons in the VMH. Thus, FGF21 signaling to glutamatergic neurons in the VMH is an important component of the neurocircuitry that functions to regulate sucrose intake

    FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit

    No full text
    Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analogue to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific sub-population of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption

    Suppression of Resting Metabolism by the Angiotensin AT2 Receptor

    Get PDF
    Activation of the brain renin-angiotensin system (RAS) stimulates energy expenditure through increasing of the resting metabolic rate (RMR), and this effect requires simultaneous suppression of the circulating and/or adipose RAS. To identify the mechanism by which the peripheral RAS opposes RMR control by the brain RAS, we examined mice with transgenic activation of the brain RAS (sRA mice). sRA mice exhibit increased RMR through increased energy flux in the inguinal adipose tissue, and this effect is attenuated by angiotensin II type 2 receptor (AT2) activation. AT2 activation in inguinal adipocytes opposes norepinephrine-induced uncoupling protein-1 (UCP1) production and aspects of cellular respiration, but not lipolysis. AT2 activation also opposes inguinal adipocyte function and differentiation responses to epidermal growth factor (EGF). These results highlight a major, multifaceted role for AT2 within inguinal adipocytes in the control of RMR. The AT2 receptor may therefore contribute to body fat distribution and adipose depot-specific effects upon cardio-metabolic health

    FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver

    No full text
    The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners. FGF21 does not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal which acts centrally to suppress the intake of “sweets.
    corecore