108 research outputs found

    Rape Myth Acceptance: Implications for Counselor Education Programs

    Get PDF
    Abstract A sexually violent act or rape is committed every 1.9 minutes in the United States (USDJ, 2009, p.1). Blaming the rape victim for their perceived complicity is one component of the construct known as rape myth, a term identified by Burt (1980). This study explored and examined the perceptions, and understanding of sexual violence, rape, and rape myths by master’s level counselors-in-training (n=5). Phenomenology and naturalistic inquiry guided the qualitative design and implementation. Suggestions for implementing rape education and training into counseling curriculums and clinical supervision are provided. Keywords: rape myth, counselors-in-training, phenomenolog

    Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands

    Get PDF
    Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP-regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP-competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2-phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 æ from the active site. Specifically, analysis of protein responses to first-generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules’ effects on Hsp90 enzymatic, conformational, cochaperone and client-binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary

    Targeting the Hsp40/Hsp70 chaperone axis as a novel strategy to treat castration-resistant prostate cancer

    Get PDF
    Castration-resistant prostate cancer (CRPC) is characterized by reactivation of androgen receptor (AR) signaling, in part by elevated expression of AR splice variants (ARv) including ARv7, a constitutively active, ligand binding domain (LBD)-deficient variant whose expression has been correlated with therapeutic resistance and poor prognosis. In a screen to identify small-molecule dual inhibitors of both androgen-dependent and androgen-independent AR gene signatures, we identified the chalcone C86. Binding studies using purified proteins and CRPC cell lysates revealed C86 to interact with Hsp40. Pull-down studies using biotinylated-C86 found Hsp40 present in a multiprotein complex with full-length (FL-) AR, ARv7, and Hsp70 in CRPC cells. Treatment of CRPC cells with C86 or the allosteric Hsp70 inhibitor JG98 resulted in rapid protein destabilization of both FL-AR and ARv, including ARv7, concomitant with reduced FL-AR- and ARv7-mediated transcriptional activity. The glucocorticoid receptor, whose elevated expression in a subset of CRPC also leads to androgen-independent AR target gene transcription, was also destabilized by inhibition of Hsp40 or Hsp70. In vivo, Hsp40 or Hsp70 inhibition demonstrated single-agent and combinatorial activity in a 22Rv1 CRPC xenograft model. These data reveal that, in addition to recognized roles of Hsp40 and Hsp70 in FL-AR LBD remodeling, ARv lacking the LBD remain dependent on molecular chaperones for stability and function. Our findings highlight the feasibility and potential benefit of targeting the Hsp40/Hsp70 chaperone axis to treat prostate cancer that has become resistant to standard antiandrogen therapy.Significance: These findings highlight the feasibility of targeting the Hsp40/Hsp70 chaperone axis to treat CRPC that has become resistant to standard antiandrogen therapy. Cancer Res; 78(14); 4022-35. ©2018 AACR

    Integration of Gene Dosage and Gene Expression in Non-Small Cell Lung Cancer, Identification of HSP90 as Potential Target

    Get PDF
    BACKGROUND: Lung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC) is essential to improve early diagnosis and treatment for this disease. METHODOLOGY AND PRINCIPAL FINDINGS: In an attempt to identify novel NSCLC related genes, we performed a genome-wide screening of chromosomal copy number changes affecting gene expression using microarray based comparative genomic hybridization and gene expression arrays on 32 radically resected tumor samples from stage I and II NSCLC patients. An integrative analysis tool was applied to determine whether chromosomal copy number affects gene expression. We identified a deletion on 14q32.2-33 as a common alteration in NSCLC (44%), which significantly influenced gene expression for HSP90, residing on 14q32. This deletion was correlated with better overall survival (P = 0.008), survival was also longer in patients whose tumors had low expression levels of HSP90. We extended the analysis to three independent validation sets of NSCLC patients, and confirmed low HSP90 expression to be related with longer overall survival (P = 0.003, P = 0.07 and P = 0.04). Furthermore, in vitro treatment with an HSP90 inhibitor had potent antiproliferative activity in NSCLC cell lines. CONCLUSIONS: We suggest that targeting HSP90 will have clinical impact for NSCLC patients

    Regulation and function of the human HSP90AA1 gene

    Full text link
    Heat shock protein 90α (Hsp90α), encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone Hsp90. Hsp90α is regulated differently and has different functions when compared to the constitutively expressed Hsp90β isoform, despite high amino acid sequence identity between the two proteins. These differences are likely due to variations in nucleotide sequence within non-coding regions, which allows for specific regulation through interaction with particular transcription factors, and to subtle changes in amino acid sequence that allow for unique post-translational modifications. This article will specifically focus on the expression, function and regulation of Hsp90α

    Rape Myth Acceptance: Implications for Counselor Education Programs

    Get PDF
    Abstract A sexually violent act or rape is committed every 1.9 minutes in the United States (USDJ, 2009, p.1). Blaming the rape victim for their perceived complicity is one component of the construct known as rape myth, a term identified by Burt (1980). This study explored and examined the perceptions, and understanding of sexual violence, rape, and rape myths by master’s level counselors-in-training (n=5). Phenomenology and naturalistic inquiry guided the qualitative design and implementation. Suggestions for implementing rape education and training into counseling curriculums and clinical supervision are provided. Keywords: rape myth, counselors-in-training, phenomenolog

    Loss of Hsp90 Association Up-Regulates Src-Dependent ErbB2 Activity

    No full text
    The receptor tyrosine kinase ErbB2 plays a crucial role in tumorigenesis. We showed previously that the molecular chaperone Hsp90 protects ErbB2 from proteasome-mediated degradation by binding to a short loop structure in the N-lobe of the kinase domain. Here we show that loss of Hsp90 binding correlates with enhanced ErbB2 kinase activity and its transactivating potential, concomitant with constitutively increased phosphorylation of Tyr877, located in the activation loop of the kinase domain. We show further that Tyr877 phosphorylation is mediated by Src and that it is necessary for the enhanced kinase activity of ErbB2. Finally, computer modeling of the kinase domain suggests a phosphorylation-dependent reorientation of the activation loop, denoting the importance of Tyr877 phosphorylation for ErbB2 activity. These findings suggest that Hsp90 binding to ErbB2 participates in regulation of kinase activity as well as kinase stability

    Calcium‐dependent inhibition of polo‐like kinase 3 activity by CIB1 in breast cancer cells

    No full text
    Members of the polo-like kinases (Plk1, Plk2, Plk3, and Plk4) are involved in the regulation of various stages of the cell cycle and have been implicated in cancer progression. Unlike its other family members the expression of Plk3 remains steady during cell cycle progression, suggesting that its activity may be spatiotemporally regulated. However, the mechanism of regulation of Plk3 activity is not well understood. Here, we show that calcium- and integrin-binding protein 1 (CIB1), a Plk3 interacting protein, is widely expressed in various cancer cell lines. Expression of CIB1 mRNA as well as protein is increased in breast cancer tissue as compared to normal tissue. CIB1 constitutively interacts with Plk3 as determined by both in vitro and in vivo assays. This interaction of CIB1 with Plk3 is independent of intracellular Ca(2+). Furthermore, binding of CIB1 results in inhibition of Plk3 kinase activity both in vitro and in vivo. Interestingly, this inhibition of the Plk3 activity by CIB1 is Ca(2+)-dependent. Taken together, our results suggest that CIB1 is a regulatory subunit of Plk3 and it regulates Plk3 activity in a Ca(2+)-dependent manner. Furthermore, upregulation of CIB1 in cancer cells could thus inhibit Plk3 activity leading to abnormal cell cycle regulation in breast cancer cells. Thus in addition to Plk3, CIB1 may be a potential biomarker and target for therapeutic intervention of breast cancer
    corecore