35 research outputs found

    Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation

    Get PDF
    We discuss the constraints on short‐term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300–4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 10^(17) Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average

    Journal of Geophysical Research: Solid Earth Toward a Global Horizontal and Vertical Elastic Load Deformation Model Derived from GRACE and GNSS Station Position Time Series

    Get PDF
    International audienceWe model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first-order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series

    Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard

    Get PDF
    We document geodetic strain across the Nepal Himalaya using GPS times series from 30 stations in Nepal and southern Tibet, in addition to previously published campaign GPS points and leveling data and determine the pattern of interseismic coupling on the Main Himalayan Thrust fault (MHT). The noise on the daily GPS positions is modeled as a combination of white and colored noise, in order to infer secular velocities at the stations with consistent uncertainties. We then locate the pole of rotation of the Indian plate in the ITRF 2005 reference frame at longitude = − 1.34° ± 3.31°, latitude = 51.4° ± 0.3° with an angular velocity of Ω = 0.5029 ± 0.0072°/Myr. The pattern of coupling on the MHT is computed on a fault dipping 10° to the north and whose strike roughly follows the arcuate shape of the Himalaya. The model indicates that the MHT is locked from the surface to a distance of approximately 100 km down dip, corresponding to a depth of 15 to 20 km. In map view, the transition zone between the locked portion of the MHT and the portion which is creeping at the long term slip rate seems to be at the most a few tens of kilometers wide and coincides with the belt of midcrustal microseismicity underneath the Himalaya. According to a previous study based on thermokinematic modeling of thermochronological and thermobarometric data, this transition seems to happen in a zone where the temperature reaches 350°C. The convergence between India and South Tibet proceeds at a rate of 17.8 ± 0.5 mm/yr in central and eastern Nepal and 20.5 ± 1 mm/yr in western Nepal. The moment deficit due to locking of the MHT in the interseismic period accrues at a rate of 6.6 ± 0.4 × 10^(19) Nm/yr on the MHT underneath Nepal. For comparison, the moment released by the seismicity over the past 500 years, including 14 M_W ≥ 7 earthquakes with moment magnitudes up to 8.5, amounts to only 0.9 × 10^(19) Nm/yr, indicating a large deficit of seismic slip over that period or very infrequent large slow slip events. No large slow slip event has been observed however over the 20 years covered by geodetic measurements in the Nepal Himalaya. We discuss the magnitude and return period of M > 8 earthquakes required to balance the long term slip budget on the MHT

    Ground deformation monitoring of the eruption offshore Mayotte

    Get PDF
    In May 2018, the Mayotte island, located in the Indian Ocean, was affected by an unprecedented seismic crisis, followed by anomalous on-land surface displacements in July 2018. Cumulatively from July 1, 2018 to December 31, 2021, the horizontal displacements were approximately 21 to 25 cm eastward, and subsidence was approximately 10 to 19 cm. The study of data recorded by the on-land GNSS network, and their modeling coupled with data from ocean bottom pressure gauges, allowed us to propose a magmatic origin of the seismic crisis with the deflation of a deep source east of Mayotte, that was confirmed in May 2019 by the discovery of a submarine eruption, 50 km offshore of Mayotte ([Feuillet et al., 2021]). Despite a non-optimal network geometry and receivers located far from the source, the GNSS data allowed following the deep dynamics of magma transfer, via the volume flow monitoring, throughout the eruption

    Déformation saisonnière de la Terre sous l’effet des variations hydrologiques : impact sur la sismicité

    No full text
    In this thesis, we aim at modeling accurately seasonal deformation of the Earth induced by redistribution of hydrosphere masses. We take advantage of seasonal ground displacements measured by continuous stations of the Global Positioning System (cGPS) and the estimate of the spatio-temporal evolution of surface hydrology derived from the Gravity and Recovery Climate Experiment (GRACE) measurements. Precise geophysical models of the seasonal deformation, discussed in Chapter 1, of the Earth have far-reaching implications in defining international terrestrial reference frame, detecting potential transient deformation with comparable period or even understanding the link between induced stress perturbations and seasonal seismicity. In Chapter 2, we show that seasonal ground displacements recorded by cGPS stations in the Himalaya are fairly well explained by the Earth’s response to seasonal hydrology derived from GRACE, which induces coherent surface displacements, in first orderapproximation, with horizontal and vertical observations simultaneously, provided that a realistic elastic, spherical and layered model for Earth is used. We extend the model to a global scale in Chapter 3, and compare displacements induced by the seasonal load at 195 cGPS stations globally distributed. We account for the degree-1 contribution in GRACE using results from Swenson et al. (2008). We find that, while the vertical displacements are well predicted by the model, the horizontal components are systematically underpredicted and out-of-phase with the observations. We show a significant improvement when we do not apply a priori degree-1 coefficients but estimate and apply a posteriori a Helmert transformto the horizontal components. The fit in phase and amplitude of the seasonal deformation model to the horizontal components is improved and does not affect the fit to the vertical measurements. We conclude that horizontal misfits result mostly from degree-one deformation plus reference frame differences between model and observations, and not from the limited spatial resolution of GRACE. However, the amplitude of global seasonal horizontal displacement remains slightlyunderpredicted. We show that mantle volume variations due to mineral phase transitions may play a role in the seasonal deformation and, as a by-product, use this seasonal deformation to provide a lower bound of the transient astenospheric viscosity. Finally, in order to test the impact of seasonal forcing on seismicity, we estimate the amplitude of periodic stress perturbations induced by seasonal loading. To further investigate the question, we performa set of triaxial deformation experiments on water-saturated Fontainebleau sandstones. Rock samples are loaded by the combined action of steps of constant stress, intended to simulate tectonic loading and small sinusoidal pore pressure variations, analogous to tides or seasonal loading. Our experimental results suggest that the correlation of small stress perturbations and acoustic emissions depends primarily on the state stress of the rock and that emissions occur more likely when cracks are unclamped. In other words, our observations suggest that tidal triggering might occur favorably during the long nucleation phase of earthquake.Cette thèse a pour objectif de modéliser les déformations saisonnières de la Terre associées aux redistributions de masses d’eau de l’hydrosphère. Pour cela, nous tirons profit de la mesure des déplacements saisonniers du sol par Global positioning system (GPS) et de l’estimation des variations spatio-temporelles de l’hydrosphère déduite du champs de gravité terrestre mesuré par la mission Gravity and recovery climate experiment (GRACE). Ces données ouvrent la voie à des modèles précis de la déformation saisonnière, discutés dans le chapitre 1, qui auront des implications importantes pour la définition des référentiels terrestres, l’identification d’évènements tectoniques de glissement de période comparable ou encore pour la compréhension du lien entre déformation et sismicité saisonnière. Dans le chapitre 2, nous montrons que les déformations saisonnières mesurées en Himalaya sont expliquées par la réponse de la Terre à la charge saisonnière de GRACE qui produit des déplacements de surface cohérents au premier ordre avec les observations horizontales et verticales simultanément à condition d’utiliser un modèle de Terre réaliste, sphérique et stratifié. Nous étendons ensuite le modèle à l’échelle globale dans le chapitre 3, et comparons les déplacements induits par la charge saisonnière à 195 stations GPS, en tenant compte des contributions de degré-1 dans le signal GRACE (Swenson et al., 2008). Alors que la composante verticale est raisonnablement prédite, les composantes horizontales sont systématiquement sous-estimées et leur phase est mal reproduite. Nous montrons que ce désaccord entre modèle et observations horizontales à l’échelle mondiale peut être associé au premier ordre à une contribution de degré-1 sous-estimée, et non à la grande résolution spatiale de GRACE. Nous proposons de l’estimer à posteriori grâce à une transformation d’Helmert, représentant le mouvement du géocentre ainsi qu’une partie de la déformation de degré-1. La corrélation entre modèle et données horizontales est nettement améliorée, sans que les prédictions verticales soient affectées. Au second ordre, nous montrons que les variations de volume dans le manteau terrestre liées aux changements de phase des minéraux qui le composent peuvent jouer un rôle dans la déformation saisonnière. Enfin, nous montrons qu’il est possible d’utiliser la déformation saisonnière pour déterminer une borne inférieure de la viscosité transitoire de l’asthénosphère, paramètre clé des modèles de déformation postsimique. Afin de tester l’hypothèse d’un impact des charges saisonnières sur la sismicité, nous examinons les variations de contrainte liées aux chargements saisonniers de surface. Nous menons également des expériences de déformation triaxiale sur des grès de Fontainebleau, saturés en eau soumis à des paliers de contrainte simulant un chargement tectonique, ainsi qu’à des oscillations sinusoïdales de la pression de pore simulant les marées ou l’hydrologie continentale. Nos observations expérimentales, détaillées dans le chapitre 4 suggèrent que les chargements périodiques de faible amplitude peuvent jouer un rôle important dans la longue phase de nucléation des séismes

    Seasonal deformation of the Earth induced by variations in hydrology : impact on seismicity

    No full text
    Cette thèse a pour objectif de modéliser les déformations saisonnières de la Terre associées aux redistributions de masses d’eau de l’hydrosphère. Pour cela, nous tirons profit de la mesure des déplacements saisonniers du sol par Global positioning system (GPS) et de l’estimation des variations spatio-temporelles de l’hydrosphère déduite du champs de gravité terrestre mesuré par la mission Gravity and recovery climate experiment (GRACE). Ces données ouvrent la voie à des modèles précis de la déformation saisonnière, discutés dans le chapitre 1, qui auront des implications importantes pour la définition des référentiels terrestres, l’identification d’évènements tectoniques de glissement de période comparable ou encore pour la compréhension du lien entre déformation et sismicité saisonnière. Dans le chapitre 2, nous montrons que les déformations saisonnières mesurées en Himalaya sont expliquées par la réponse de la Terre à la charge saisonnière de GRACE qui produit des déplacements de surface cohérents au premier ordre avec les observations horizontales et verticales simultanément à condition d’utiliser un modèle de Terre réaliste, sphérique et stratifié. Nous étendons ensuite le modèle à l’échelle globale dans le chapitre 3, et comparons les déplacements induits par la charge saisonnière à 195 stations GPS, en tenant compte des contributions de degré-1 dans le signal GRACE (Swenson et al., 2008). Alors que la composante verticale est raisonnablement prédite, les composantes horizontales sont systématiquement sous-estimées et leur phase est mal reproduite. Nous montrons que ce désaccord entre modèle et observations horizontales à l’échelle mondiale peut être associé au premier ordre à une contribution de degré-1 sous-estimée, et non à la grande résolution spatiale de GRACE. Nous proposons de l’estimer à posteriori grâce à une transformation d’Helmert, représentant le mouvement du géocentre ainsi qu’une partie de la déformation de degré-1. La corrélation entre modèle et données horizontales est nettement améliorée, sans que les prédictions verticales soient affectées. Au second ordre, nous montrons que les variations de volume dans le manteau terrestre liées aux changements de phase des minéraux qui le composent peuvent jouer un rôle dans la déformation saisonnière. Enfin, nous montrons qu’il est possible d’utiliser la déformation saisonnière pour déterminer une borne inférieure de la viscosité transitoire de l’asthénosphère, paramètre clé des modèles de déformation postsimique. Afin de tester l’hypothèse d’un impact des charges saisonnières sur la sismicité, nous examinons les variations de contrainte liées aux chargements saisonniers de surface. Nous menons également des expériences de déformation triaxiale sur des grès de Fontainebleau, saturés en eau soumis à des paliers de contrainte simulant un chargement tectonique, ainsi qu’à des oscillations sinusoïdales de la pression de pore simulant les marées ou l’hydrologie continentale. Nos observations expérimentales, détaillées dans le chapitre 4 suggèrent que les chargements périodiques de faible amplitude peuvent jouer un rôle important dans la longue phase de nucléation des séismes.In this thesis, we aim at modeling accurately seasonal deformation of the Earth induced by redistribution of hydrosphere masses. We take advantage of seasonal ground displacements measured by continuous stations of the Global Positioning System (cGPS) and the estimate of the spatio-temporal evolution of surface hydrology derived from the Gravity and Recovery Climate Experiment (GRACE) measurements. Precise geophysical models of the seasonal deformation, discussed in Chapter 1, of the Earth have far-reaching implications in defining international terrestrial reference frame, detecting potential transient deformation with comparable period or even understanding the link between induced stress perturbations and seasonal seismicity. In Chapter 2, we show that seasonal ground displacements recorded by cGPS stations in the Himalaya are fairly well explained by the Earth’s response to seasonal hydrology derived from GRACE, which induces coherent surface displacements, in first orderapproximation, with horizontal and vertical observations simultaneously, provided that a realistic elastic, spherical and layered model for Earth is used. We extend the model to a global scale in Chapter 3, and compare displacements induced by the seasonal load at 195 cGPS stations globally distributed. We account for the degree-1 contribution in GRACE using results from Swenson et al. (2008). We find that, while the vertical displacements are well predicted by the model, the horizontal components are systematically underpredicted and out-of-phase with the observations. We show a significant improvement when we do not apply a priori degree-1 coefficients but estimate and apply a posteriori a Helmert transformto the horizontal components. The fit in phase and amplitude of the seasonal deformation model to the horizontal components is improved and does not affect the fit to the vertical measurements. We conclude that horizontal misfits result mostly from degree-one deformation plus reference frame differences between model and observations, and not from the limited spatial resolution of GRACE. However, the amplitude of global seasonal horizontal displacement remains slightlyunderpredicted. We show that mantle volume variations due to mineral phase transitions may play a role in the seasonal deformation and, as a by-product, use this seasonal deformation to provide a lower bound of the transient astenospheric viscosity. Finally, in order to test the impact of seasonal forcing on seismicity, we estimate the amplitude of periodic stress perturbations induced by seasonal loading. To further investigate the question, we performa set of triaxial deformation experiments on water-saturated Fontainebleau sandstones. Rock samples are loaded by the combined action of steps of constant stress, intended to simulate tectonic loading and small sinusoidal pore pressure variations, analogous to tides or seasonal loading. Our experimental results suggest that the correlation of small stress perturbations and acoustic emissions depends primarily on the state stress of the rock and that emissions occur more likely when cracks are unclamped. In other words, our observations suggest that tidal triggering might occur favorably during the long nucleation phase of earthquake

    Metamorphic transformation rate over large spatial and temporal scales constrained by geophysical data and coupled modelling

    Get PDF
    International audienceMetamorphic transformation rates are classically determined on decimetre-scale field samples and from laboratory experiments at smaller scales. Here we present a geophysical approach based on field data and joint geophysical–petrological modelling to quantify the average rate of metamorphic transformations at the 10–100-kilometre and million-year scales. The model simulates the eclogitization of Indian lower crust as it penetrates beneath southern Tibet. Metamorphic transformation of the lower crust is tracked by its densification, the effect of which is then compared to observed gravity anomalies. From the modelling we find that the Indian lower crust's overall densification requires a partially hydrated initial composition. Moreover, the modelled evolution of this densification compared to what is predicted by pressure–temperature–density grids is consistent with delayed, far-from-equilibrium metamorphism. The Indian lower crust descends underneath the Himalaya until beneath southern Tibet in a thermodynamically metastable state until the first dehydration reactions are reached. This observation is used to determine the average rate of metastable rock transformation to an eclogite facies assemblage, constrained at between ~6 × 10−9 and 5 × 10−7 g/cm2/year, and reaction affinity at 0.8–1.6 kJ/mol oxygen. Compared to field and laboratory data, this range of results matches the effective rates typically associated with regional metamorphism. This fit and correlation across the scales legitimates the use of transformation rates determined at small scales in large-scale geodynamic studie

    Field optical clocks and sensitivity to mass anomalies for geoscience applications

    No full text
    International audience350 years ago, the pendulum clock for astronomical observations was diverted to become an instrument for measuring gravity. The measurement of the parallax of Mars by Richer and Cassini from Cayenne and Paris showed that the period of a periodic oscillator depends on the gravity field. A link was thus established between the improvement of time measurement and the knowledge of the phenomena that govern it. Since then, the performance and nature of clocks have evolved considerably. Today, atomic clocks are used in various fields that are essential to modern society, such as the realisation of international atomic time (TAI), satellite navigation (GNSS), geodesy, the traceability of trading events, etc.In the framework of the french ANR ROYMAGE, we are interested in the contribution of a transportable optical field clock for geoscience applications by using the principle of chronometric geodesy. The idea is based on the gravitational redshift, a relativistic effect that predicts that the beat of a clock depends on the speed at which it is moving and the strength of the surrounding gravitational potential. In practice, this means that if we compare the beat of two clocks, then it is possible to directly measure a difference in gravitational potential (or a change in height) between these two clocks. This type of measurement is original because classical geodetic techniques only allow to determine the potential indirectly from gravimetric and classical levelling data.In this work, we model the gravitational signature (potential, acceleration and tensor) of a mass anomaly as a function of its geometry, depth, size and density contrast. These synthetic simulations allow us to identify which types of structures can be detected by clock comparison measurements with a relative frequency uncertainty fixed at 10-17-18-19 (i.e. a vertical sensitivity of less than 10 cm - 1 cm - 1 mm respectively). We are also interested in the spatial resolution required for a clock measurement to detect two mass anomalies depending on its orientation. Finally, we show that this new chronometric observable combined with gravimetry and gradiometry data could allow a better separation of the sources by adding an additional constraint thanks to the medium and long wavelength gravitational information it provides.The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-20-CE47-0006
    corecore