193 research outputs found
Mendelian Randomization Identifies the Potential Causal Impact of Dietary Patterns on Circulating Blood Metabolites
Nutrition plays an important role in the development and progress of several health conditions, but the exact mechanism is often still unclear. Blood metabolites are likely candidates to be mediating these relationships, as their levels are strongly dependent on the frequency of consumption of several foods/drinks. Understanding the causal effect of food on metabolites is thus of extreme importance. To establish these effects, we utilized two-sample Mendelian randomization using the genetic variants associated with dietary traits as instrumental variables. The estimates of single-nucleotide polymorphisms’ effects on exposures were obtained from a recent genome-wide association study (GWAS) of 25 individual and 15 principal-component dietary traits, whereas the ones for outcomes were obtained from a GWAS of 123 blood metabolites measured by nuclear magnetic resonance spectroscopy. We identified 413 potentially causal links between food and metabolites, replicating previous findings, such as the association between increased oily fish consumption and higher DHA, and highlighting several novel associations. Most of the associations were related to very-low-density, intermediate-density (IDL), and low-density lipoproteins (LDL). For example, we found that constituents of IDL particles and large LDL particles were raised by coffee and alcohol while lowered by an overall healthier diet and fruit consumption. Our findings provide a strong base of evidence for planning future RCTs aimed at understanding the role of diet in determining blood metabolite levels
A catalogue of omics biological ageing clocks reveals substantial commonality and associations with disease risk
Biological age (BA), a measure of functional capacity and prognostic of health outcomes that discriminates between individuals of the same chronological age (chronAge), has been estimated using a variety of biomarkers. Previous comparative studies have mainly used epigenetic models (clocks), we use ~1000 participants to compare fifteen omics ageing clocks, with correlations of 0.21-0.97 with chronAge, even with substantial sub-setting of biomarkers. These clocks track common aspects of ageing with 95% of the variance in chronAge being shared among clocks. The difference between BA and chronAge - omics clock age acceleration (OCAA) - often associates with health measures. One year’s OCAA typically has the same effect on risk factors/10-year disease incidence as 0.09/0.25 years of chronAge. Epigenetic and IgG glycomics clocks appeared to track generalised ageing while others capture specific risks. We conclude BA is measurable and prognostic and that future work should prioritise health outcomes over chronAge
Recommended from our members
Variants near CHRNA3/5 and APOE have age- and sex-related effects on human lifespan
Lifespan is a trait of enormous personal interest. Research into the biological basis of human lifespan, however, is hampered by the long time to death. Using a novel approach of regressing (272,081) parental lifespans beyond age 40 years on participant genotype in a new large data set (UK Biobank), we here show that common variants near the apolipoprotein E and nicotinic acetylcholine receptor subunit alpha 5 genes are associated with lifespan. The effects are strongly sex and age dependent, with APOE ɛ4 differentially influencing maternal lifespan (P=4.2 × 10−15, effect −1.24 years of maternal life per imputed risk allele in parent; sex difference, P=0.011), and a locus near CHRNA3/5 differentially affecting paternal lifespan (P=4.8 × 10−11, effect −0.86 years per allele; sex difference P=0.075). Rare homozygous carriers of the risk alleles at both loci are predicted to have 3.3–3.7 years shorter lives
Proteomic evidence of dietary sources in ancient dental calculus.
Archaeological dental calculus has emerged as a rich source of ancient biomolecules, including proteins. Previous analyses of proteins extracted from ancient dental calculus revealed the presence of the dietary milk protein β-lactoglobulin, providing direct evidence of dairy consumption in the archaeological record. However, the potential for calculus to preserve other food-related proteins has not yet been systematically explored. Here we analyse shotgun metaproteomic data from 100 archaeological dental calculus samples ranging from the Iron Age to the post-medieval period (eighth century BC to nineteenth century AD) in England, as well as 14 dental calculus samples from contemporary dental patients and recently deceased individuals, to characterize the range and extent of dietary proteins preserved in dental calculus. In addition to milk proteins, we detect proteomic evidence of foodstuffs such as cereals and plant products, as well as the digestive enzyme salivary amylase. We discuss the importance of optimized protein extraction methods, data analysis approaches and authentication strategies in the identification of dietary proteins from archaeological dental calculus. This study demonstrates that proteomic approaches can robustly identify foodstuffs in the archaeological record that are typically under-represented due to their poor macroscopic preservation
Recommended from our members
Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition
Discovery and refinement of loci associated with lipid levels
Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P \u3c 5 × 10 -8, including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research. © 2013 Nature America, Inc. All rights reserved
An Epigenetic Blockade of Cognitive Functions in the Neurodegenerating Brain
Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer’s disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer’s-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer’s disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade
- …