4 research outputs found

    Strong Antibonding I (p)–Cu (d) States Lead to Intrinsically Low Thermal Conductivity in CuBiI<sub>4</sub>

    No full text
    Chemical bonding present in crystalline solids has a significant impact on how heat moves through a lattice, and with the right chemical tuning, one can achieve extremely low thermal conductivity. The desire for intrinsically low lattice thermal conductivity (κlat) has gained widespread attention in thermoelectrics, in refractories, and nowadays in photovoltaics and optoelectronics. Here we have synthesized a high-quality crystalline ingot of cubic metal halide CuBiI4 and explored its chemical bonding and thermal transport properties. It exhibits an intrinsically ultralow κlat of ∼0.34–0.28 W m–1 K–1 in the temperature range 4–423 K with an Umklapp crystalline peak of 1.82 W m–1 K–1 at 20 K, which is surprisingly lower than other copper-based halide or chalcogenide materials. The crystal orbital Hamilton population analysis shows that antibonding states generated just below the Fermi level (Ef), which arise from robust copper 3d and iodine 5p interactions, cause copper–iodide bond weakening, which leads to reduction of the elastic moduli and softens the lattice, finally to produce extremely low κlat in CuBiI4. The chemical bonding hierarchy with mixed covalent and ionic interactions present in the complex crystal structure generates significant lattice anharmonicity and a low participation ratio in low-lying optical phonon modes originating mostly from localized copper–iodide bond vibrations. We have obtained experimental evidence of these low-lying modes by low-temperature specific heat capacity measurement as well as Raman spectroscopy. The presence of strong p–d antibonding interactions between copper and iodine leads to anharmonic soft crystal lattice which gives rise to low-energy localized optical phonon bands, suppressing the heat-carrying acoustic phonons to steer intrinsically ultralow κlat in CuBiI4

    Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation

    No full text
    Abstract Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent. Graphical Abstrac

    Three-Fold Coordination of Copper in Sulfides: A Blockade for Hole Carrier Delocalization but a Driving Force for Ultralow Thermal Conductivity

    No full text
    International audienceCopper-rich sulfides are very promising for energy conversion applications due to their environmental compatibility, cost effectiveness, and earth abundance. Based on a comparative analysis of the structural and transport properties of Cu3BiS3 with those of tetrahedrite (Cu12Sb4S13) and other Cu-rich sulfides, we highlight the role of the cationic coordination types and networks on the electrical and thermal properties. By precession-assisted 3D electron diffraction analysis, we find very high anisotropic thermal vibration of copper attributed to its 3-fold coordination, with an anisotropic atomic displacement parameter up to 0.09 Å2. Density functional theory calculations reveal that these Cu atoms are weakly bonded and give rise to low-energy Einstein-like vibrational modes that strongly scatter heat-carrying acoustic phonons, leading to ultralow thermal conductivity. Importantly, we demonstrate that the 3-fold coordination of copper in Cu3BiS3 and in other copper-rich sulfides constituted of interconnected CuS3 networks causes a hole blockade. This phenomenon hinders the possibility of optimizing the carrier concentration and electronic properties through mixed valency Cu+/Cu2+, differently from tetrahedrite and most other copper-rich chalcogenides, where the main interconnected Cu–S network is built of CuS4 tetrahedra. The comparison with various copper-rich sulfides demonstrates that seeking for frameworks characterized by the coexistence of tetrahedral and 3-fold coordinated copper is very attractive for the discovery of efficient thermoelectric copper-rich sulfides. Considering that lattice vibrations and carrier concentration are key factors for engineering transport phenomena (electronic, phonon, ionic, etc.) in copper-rich chalcogenides for various types of applications, our findings improve the guidelines for the design of materials enabling sustainable energy solutions with wide-ranging applications
    corecore