440 research outputs found
A Search for Radio Emission at the Bottom of the Main Sequence and Beyond
We have used the VLA to conduct a deep search for 3.6 cm radio emission from
nearby very low mass stars and brown dwarfs. The Gudel-Benz relation is used to
predict radio luminosities for some very low mass stars and candidate brown
dwarfs with measured X-ray fluxes. The predicted radio fluxes are quite small,
whereas the measured radio flux from the brown dwarf candidate Rho Oph GY 31 is
relatively strong. In light of our new observations, this object remains an
anomaly. We present upper limits for our measured radio fluxes at 3.6 cm for
our targets.Comment: 10 pages, no figures. Accepted for publication in A
Dynamics of a spin-exchange model
AbstractWe study a model on the non-negative half line Z+0, {0, 1, 2, âŠ} in which particles created at the origin at rate 1 jump to the right at rate 1. If a particle jumps onto an already occupied site the two particles annihilate each other. In addition, whenever a particle jumps its closest neighbor to the right jumps along with it. We find that the spatial decay rate of the particle density in the stationary state is of order 1âx at distance x from the origin. This model provides an approximation to the dynamics of an anchored Toom interface which can be represented as a spin-exchange model
Information methods for predicting risk and outcome of stroke
Stroke is a major cause of disability and mortality in most economically developed countries. It is the second leading cause of death worldwide (after cancer and heart disease) [55.1, 2] and a major cause of disability in adults in developed countries [55.3]. Personalized modeling is an emerging effective computational approach, which has been applied to various disciplines, such as in personalized drug design, ecology, business, and crime prevention; it has recently become more prominent in biomedical applications. Biomedical data on stroke risk factors and prognostic data are available in a large volume, but the data are complex and often difïŹcult to apply to a speciïŹc person. Individualizing stroke risk prediction and prognosis will allow patients to focus on risk factors speciïŹc to them, thereby reducing their stroke risk and managing stroke outcomes more effectively. This chapter reviews various methodsâconventional statistical methods and computational intelligent modeling methods for predicting risk and outcome of stroke
A Search for Photometric Rotation Periods in Low-Mass Stars and Brown Dwarfs in the Pleiades
We have photometrically monitored (Cousins Ic) eight low mass stars and brown
dwarfs which are probable members of the Pleiades. We derived rotation periods
for two of the stars - HHJ409 and CFHT-PL8 - to be 0.258 d and 0.401 d,
respectively. The masses of these stars are near 0.4 and 0.08 Msun,
respectively; the latter is the second such object near the hydrogen-burning
boundary for which a rotation period has been measured. We also observed HHJ409
in V; the relative amplitude in the two bands shows that the spots in that star
are about 200 K cooler than the stellar effective temperature of 3560 K and
have a filling factor on the order of 13%. With one possible exception, the
remaining stars in the sample do not show photometric variations larger than
the mean error of measurement. We also examined the M9.5V disk star 2MASSJ0149,
which had previously exhibited a strong flare event, but did not detect any
photometric variation.Comment: 13 pages, four figures. Accepted for publication in A
Hypothesis Validation of Far-Wall Brightness in Carotid-Artery Ultrasound for Feature-Based IMT Measurement Using a Combination of Level-Set Segmentation and Registration
Intima-media thickness (IMT) is now being considered as an indicator of atherosclerosis. Our group has developed several feature-based IMT measurement algorithms such as the Completely Automated Layer EXtraction (CALEX) (which is a class of patented AtheroEdge Systems from Global Biomedical Technologies, Inc., CA, USA). These methods are based on the hypothesis that the highest pixel intensities are in the far wall of the common carotid artery (CCA) or the internal carotid artery (ICA). In this paper, we verify that this hypothesis holds true for B-mode longitudinal ultrasound (US) images of the carotid wall. This patented methodology consists of generating the composite image (the arithmetic sum of images) from the database by first registering the carotid image frames with respect to a nearly straight carotid-artery frame from the same database using: 1) B-spline-based nonrigid registration and 2) affine registration. Prior to registration, we segment the carotid-artery lumen using a level-set-based algorithm followed by morphological image processing. The binary lumen images are registered, and the transformations are applied to the original grayscale CCA images. We evaluated our technique using a database of 200 common carotid images of normal and pathologic carotids. The composite image presented the highest intensity distribution in the far wall of the CCA/ICA, validating our hypothesis. We have also demonstrated the accuracy and improvement in the IMT segmentation result with our CALEX 3.0 system. The CALEX system, when run on newly acquired US images, shows the IMT error of about 30 mu m. Thus, we have shown that the CALEX algorithm is able to exploit the far-wall brightness for accurate IMT measurements
The Coronal Structure of AB Doradus
We perform a numerical simulation of the corona of the young, rapidly
rotating K0 dwarf AB Doradus using a global MHD model. The model is driven by a
surface map of the radial magnetic field constructed using Zeeman-Doppler
Imaging. We find that the global structure of the stellar corona is dominated
by strong azimuthal tangling of the magnetic field due to the rapid rotation.
The MHD solution enables us to calculate realistic Alfv\'en surfaces and we can
therefore estimate the stellar mass loss rate and angular momentum loss rate
without making undue theoretical simplifications. We consider three cases,
parametrized by the base density of the corona, that span the range of possible
solutions for the system. We find that overall, the mass and angular-momentum
loss rates are higher than in the solar case; the mass loss rates are 10 to 500
times higher, and the angular momentum loss rate can be up to
higher than present day solar values. Our simulations show that this model can
be use to constrain the wide parameter space of stellar systems. It also shows
that an MHD approach can provide more information about the physical system
over the commonly used potential field extrapolation.Comment: 13 pages, 7 figure
Kepler Cycle 1 Observations of Low Mass Stars: New Eclipsing Binaries, Single Star Rotation Rates, and the Nature and Frequency of Starspots
We have analyzed Kepler light curves for 849 stars with T_eff < 5200 K from
our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one
of which has an orbital period of 29.91 d, and two of which are probably W UMa
variables. In addition, we identify a candidate "warm Jupiter" exoplanet. We
further examine a subset of 670 sources for variability. Of these objects, 265
stars clearly show periodic variability that we assign to rotation of the
low-mass star. At the photometric precision level provided by Kepler, 251 of
our objects showed no evidence for variability. We were unable to determine
periods for 154 variable objects. We find that 79% of stars with T_eff < 5200 K
are variable. The rotation periods we derive for the periodic variables span
the range 0.31 < P_rot < 126.5 d. A considerable number of stars with rotation
periods similar to the solar value show activity levels that are 100 times
higher than the Sun. This is consistent with results for solar-like field
stars. As has been found in previous studies, stars with shorter rotation
periods generally exhibit larger modulations. This trend flattens beyond P_rot
= 25 d, demonstrating that even long period binaries may still have components
with high levels of activity and investigating whether the masses and radii of
the stellar components in these systems are consistent with stellar models
could remain problematic. Surprisingly, our modeling of the light curves
suggests that the active regions on these cool stars are either preferentially
located near the rotational poles, or that there are two spot groups located at
lower latitudes, but in opposing hemispheres.Comment: 48 pages, 11 figure
On the Effect of Magnetic Spots on Stellar Winds and Angular Momentum Loss
We simulate the effect of latitudinal variations in the location of star
spots, as well as their magnetic field strength, on stellar angular momentum
loss to the stellar wind. We use the Michigan solar corona global
MagnetoHydroDynamic model, which incorporates realistic relation between the
magnetic field topology and the wind distribution. We find that the spots
location significantly affects the stellar wind structure, and as a result, the
total mass loss rate and angular momentum loss rate. In particular, we find
that the angular momentum loss rate is controlled by the mass flux when spots
are located at low latitudes but is controlled by an increased plasma density
between the stellar surface and the Alfven surface when spots are located at
high latitudes. Our results suggest that there might be a feedback mechanism
between the magnetic field distribution, wind distribution, angular momentum
loss through the wind, and the motions at the convection zone that generate the
magnetic field. This feedback might explain the role of coronal magnetic fields
in stellar dynamos
RACE-OC Project: Rotation and variability in the open cluster M11 (NGC6705)
Rotation and magnetic activity are intimately linked in main-sequence stars
of G or later spectral types. The presence and level of magnetic activity
depend on stellar rotation, and rotation itself is strongly influenced by
strength and topology of the magnetic fields. Open clusters represent
especially useful targets to investigate the rotation/activity/age connection.
The open cluster M11 has been studied as a part of the RACE-OC project
(Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring
the evolution of rotation and magnetic activity in the late-type members of
open clusters with different ages. Photometric observations of the open cluster
M11 were carried out in June 2004 using LOAO 1m telescope. The rotation periods
of the cluster members are determined by Fourier analysis of photometric data
time series. We further investigated the relations between the surface
activity, characterized by the light curve amplitude, and rotation. We have
discovered a total of 75 periodic variables in the M11 FoV, of which 38 are
candidate cluster members. Specifically, among cluster members we discovered 6
early-type, 2 eclipsing binaries and 30 bona-fide single periodic late-type
variables. Considering the rotation periods of 16 G-type members of the almost
coeval 200-Myr M34 cluster, we could determine the rotation period distribution
from a more numerous sample of 46 single G stars at an age of about 200-230 Myr
and determine a median rotation period P=4.8d. A comparison with the younger
M35 cluster (~150 Myr) and with the older M37 cluster (~550 Myr) shows that G
stars rotate slower than younger M35 stars and faster than older M37 stars. The
measured variation of the median rotation period is consistent with the
scenario of rotational braking of main-sequence spotted stars as they age.Comment: Accepted by Astronomy and Astrophysics on Dec 15, 200
New rotation periods in the Pleiades: Interpreting activity indicators
We present results of photometric monitoring campaigns of G, K and M dwarfs
in the Pleiades carried out in 1994, 1995 and 1996. We have determined rotation
periods for 18 stars in this cluster. In this paper, we examine the validity of
using observables such as X-ray activity and amplitude of photometric
variations as indicators of angular momentum loss. We report the discovery of
cool, slow rotators with high amplitudes of variation. This contradicts
previous conclusions about the use of amplitudes as an alternate diagnostic of
the saturation of angular momentum loss. We show that the X-ray data can be
used as observational indicators of mass-dependent saturation in the angular
momentum loss proposed on theoretical grounds.Comment: 24 pages, LaTex (AASTeX); includes 8 postscript figures and 4 Latex
tables. To appear in ApJ, Feb. 1, 1998. Postscript version of preprint can be
obtained from http://casa.colorado.edu/~anitak/pubs.htm
- âŠ