38 research outputs found

    An investigation into the effect of rate of stirring of bath electrolyte on the properties of electrodeposited CdTe thin film semiconductors

    Get PDF
    Electrodeposition (ED) has been recognized as a low cost and scalable technique available for fabrication of CdS/CdTe solar cells. Photovoltaic activity of these electrodeposited semiconductor materials drastically depends on the ED growth parameters namely; electrodeposition potential, concentrations and ratios of concentrations of precursors used to prepare the bath electrolyte, pH of the electrolyte, deposition temperature and rate of stirring of the electrolyte. In order to grow thin films with good photovoltaic properties, it is essential to maintain these variables at their optimum ranges of values during electrodepositions. Hence, this study was conducted to investigate the dependence of the properties of electrodeposited CdTe thin film material on the rate of stirring of the bath electrolyte. The CdTe material was grown on glass/FTO (23 cm2) and glass/FTO/CdS (23 cm2) surfaces in bath electrolytes containing 1.0 mol/L CdSO4 and 1.0 mmol/L TeO2 solutions at different rates of stirring within the range of 0-350 rpm while keeping the values of pH of the electrolyte, deposition temperature and cathodic deposition potential with respect to the saturated calomel electrode at 2.3, 65 °C and 650 mV respectively. After the heat treatment at 400 °C in air atmosphere, the deposited samples with a good visual appearance were selected and evaluated based on their morphological, elemental, structural, optical and electrical properties in order to identify the optimum range of rate of stirring for electrodeposition of CdTe thin film semiconductors. Results revealed that, rates of stirring in the range of 60-85 rpm in a 100 mL volume of electrolyte containing the substrate and the counter electrodes in the center of the bath with a separation of 2.0 cm between them can electrodeposit CdTe layers exhibiting required levels of morphological, structural, optical and electrical properties on both glass/FTO and glass/FTO/CdS surfaces

    Optimisation of pH of cadmium chloride post-growth-treatment in processing CDS/CDTE based thin film solar cells

    Get PDF
    The role of Chlorine-based activation in the production of high quality CdS/CdTe photovoltaic have been well discussed and explored with an overlook of the effect of Cadmium chloride (CdCl2) post-growth treatment acidity on the property of the fabricated devices. This work focuses on the optimisation of CdCl2 post-growth treatment pH as it affects both the material and fabricated device properties of all-electrodeposited multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration. CdCl2 treatments with acidity ranging from pH1 to pH4 were explored. The properties of the ensued CdTe layer were explored using optical, morphological, compositional structural and electrical property analysis, while, the effect on fabricated multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration were also explored using both I-V and C-V measurements. Highest improvements in the optical, morphological, compositional and structural were observed at pH2 CdCl2 post-growth treatment with an improvement in absorption edge, grain size, crystallinity and crystallite size. Conductivity type conversions from n-CdTe to p-CdTe, increase in pin-hole density and collapse of the absorption edge were observed after pH1 CdCl2 treatment. The highest fabricated solar cell efficiency of 13% was achieved using pH2 CdCl2 treatment as compared to other pH values explored

    Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate

    Get PDF
    Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.Spanish Ministry of Education and Science; AEA Technology Environment; Nova Energie; The Swedish Gas Centre; University of Southern Denmark

    Orientation and dynamics of transmembrane peptides: the power of simple models

    Get PDF
    In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function

    Dietary addition of a standardized extract of turmeric (TurmaFEEDTM) improves growth performance and carcass quality of broilers

    No full text
    Abstract Background Indiscriminate use of antibiotics in livestock and poultry farming has caused emergence of new pathogenic strains. The situation has warrented the development of safe and alternative growth promoters and immunity enhancers in livestock. Herbal additives in animal and bird feed is a centuries-old practice. Thus, the present study investigated the efficacy of a standardized formulation of lipophilic turmeric extract containing curcumin and turmerones, (TF-36), as a natural growth promoter poultry feed additive. Methods The study was designed on 180 one-day old chicks, assigned into three groups. Control group (T0) kept on basal diet and supplemented groups T0.5 and T1 fed with 0.5% and 1% TF-36 fortified basal diet for 42 days. Each dietary group consisted of six replicates of ten birds. Body weight, food intake, food conversion ratio, skin colour, blood biochemical analysis and antioxidant status of serum were investigated. Results Body weight improved significantly in T1 with a 10% decrease in FCR as compared to the control. TF-36 supplementation in T1 enhanced the antioxidant enzyme activity significantly (p < 0.05) with a decrease (p < 0.05) in lipid peroxidation. It also caused a slight yellow skin pigmentation without any change in meat color, indicating the bioavailability of curcumin from TF-36. However, no significant change in the concentration of serum creatinine, total protein and liver enzyme activities were observed, indicating the safety. Conclusion In summary, we concluded that TF-36 can be a natural feed additive to improve growth performance in poultry, probably due to the better antioxidant activity and antimicrobial effects contributed by the better bioavailability of curcuminoids and turmerones. Besides, curcuminoids and turmerones were also known to be gastroprotective and anti-inflammatory agents

    A novel powder formulation of coconut inflorescence sap inhibits alcoholic liver damage by modulating inflammatory markers, extracellular matrix metalloproteinase, and oxidative stress

    No full text
    Practical applications Despite the fact that unfermented coconut inflorescence sap (CSP) is a popular health drink in many of the Asian countries, systematic investigations on its pharmacological effects are limited. Herein, we report the hepatoprotective effect of a novel powder formulation of CSP for the first time. Adult male Wistar rats were grouped into three and treated separately with vehicle, ethanol, and ethanol+CSP (250 mg/kg body weight) for 30 days. Ethanol treatment (12.5 g/kg body weight of 90% v/v]) induced significant liver damage as evidenced from the elevation (p < .01) in liver function markers (SGPT, SGOT, and ALP), inflammatory markers (WBC, CRP, IL-6, TNF-, TLR-4, and nitrite) and lipid peroxidation along with decrease in endogenous antioxidant markers (SOD, CAT, GPx, GSH) and significant dysregulation of extracellular matrix as shown by the over expressions of matrix metalloproteinase (MMP-2, MMP-9), and histopathology/cytology measurements. But, supplementation of CSP demonstrated significant (p < .001) inhibition of alcoholic hepatic damage with reversal (p > .05) of the biochemical markers and indicated hepatic cell regeneration. The results of the present study suggest plausible hepatoprotective efficacy of the powder form of coconut inflorescence sap (CSP) by modulating inflammatory markers, extracellular matrix metalloproteinase, and oxidative stress. Further, the stable powder form has great potential since it can overcome the inherent problem of rapid fermentation of the sap to alcohol during storage, which is a major hurdle in its development as a functional food/beverage

    Anti-inflammatory effect of a novel formulation of coconut inflorescence sap against ox-LDL induced inflammatory responses in human peripheral blood mononuclear cells by modulating TLR-NF-kappa B signaling pathway

    No full text
    Oxidized low density lipoprotein (ox LDL) induced inflammatory response was reported to play an important role in the pathogenesis of atherosclerosis. The purpose of this study was to explore the anti-inflammatory effect of a novel formulation of coconut inflorescence sap (CSP); COCOZENTM against ox-LDL induced inflammatory responses in human peripheral blood mononuclear cells (hPBMCs). The hPBMCs were isolated from healthy human volunteers and cultured in collagen coated plates at 37 degrees C. The cells were grouped as Group I (Control), Group II (ox-LDL treated) and Group III (ox-LDLthornCSP treated). Further analysis of inflammatory markers, reactive oxygen species, mRNA and protein expression levels indicated increased expressions of TLR-4, TNF-alpha, IL-6 and VCAM-1 in ox-LDL treated group along with the nuclear translocation of NF-kappa B. Other inflammatory markers such as LOX, PGE2, NO, total COX and lipid peroxidation level were also found to be significantly (p<. 05) increased upon Ox-LDL treatment. The treatment with CSP on the other hand was found to down regulate and reverse the ox-LDL-induced alterations indicating its potential anti-inflammatory effect on hPBMCs via TLR-NF-kappa B signaling pathway
    corecore