10,403 research outputs found

    Asymptotic analysis and spectrum of three anyons

    Full text link
    The spectrum of anyons confined in harmonic oscillator potential shows both linear and nonlinear dependence on the statistical parameter. While the existence of exact linear solutions have been shown analytically, the nonlinear dependence has been arrived at by numerical and/or perturbative methods. We develop a method which shows the possibility of nonlinearly interpolating spectrum. To be specific we analyse the eigenvalue equation in various asymptotic regions for the three anyon problem.Comment: 28 pages, LaTeX, 2 Figure

    Brownian Motion on a Sphere: Distribution of Solid Angles

    Full text link
    We study the diffusion of Brownian particles on the surface of a sphere and compute the distribution of solid angles enclosed by the diffusing particles. This function describes the distribution of geometric phases in two state quantum systems (or polarised light) undergoing random evolution. Our results are also relevant to recent experiments which observe the Brownian motion of molecules on curved surfaces like micelles and biological membranes. Our theoretical analysis agrees well with the results of computer experiments.Comment: 11 pages, two figures, Fig2 in Colour,references update

    Queueing analysis of a canonical model of real-time multiprocessors

    Get PDF
    A logical classification of multiprocessor structures from the point of view of control applications is presented. A computation of the response time distribution for a canonical model of a real time multiprocessor is presented. The multiprocessor is approximated by a blocking model. Two separate models are derived: one created from the system's point of view, and the other from the point of view of an incoming task

    Characterization of real-time computers

    Get PDF
    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization

    Structural, optical and nanomechanical properties of (1 1 1) oriented nanocrystalline ZnTe thin films

    Get PDF
    Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young’s modulus obtained from loaddisplacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ∼0.4.Financial support in the form of fellowships to MSRNK and SK from the ACRHEM project of DRDO is acknowledged

    Oscillations and temporal signalling in cells

    Get PDF
    The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration, using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show "ultradian" oscillations, with time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NFkB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour

    Synchronization and fault-masking in redundant real-time systems

    Get PDF
    A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration

    Jet stability, dynamics and energy transport

    Full text link
    Relativistic jets carry energy and particles from compact to very large scales compared with their initial radius. This is possible due to their remarkable collimation despite their intrinsic unstable nature. In this contribution, I review the state-of-the-art of our knowledge on instabilities growing in those jets and several stabilising mechanisms that may give an answer to the question of the stability of jets. In particular, during the last years we have learned that the limit imposed by the speed of light sets a maximum amplitude to the instabilities, contrary to the case of classical jets. On top of this stabilising mechanism, the fast growth of unstable modes with small wavelengths prevents the total disruption and entrainment of jets. I also review several non-linear processes that can have an effect on the collimation of extragalactic and microquasar jets. Within those, I remark possible causes for the decollimation and decelleration of FRI jets, as opposed to the collimated FRII's. Finally, I give a summary of the main reasons why jets can propagate through such long distances.Comment: For the proceedings of High Energy Phenomena in Relativistic Outflows III (HEPRO III, IJMPD, accepted). 12 page
    corecore