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1. INTRODUCTION

There are indications that progress toward higher chip density, lower cost and

greater reliability of microprocessors and memories will continue into the next decade.

This trend naturally leads to the design of faster and more reliable multiprocessors than

thcir uniprocessor counterpart. However, use of multiple microprocessors to specd up

general-purpose computations requires the solution of such important problems as task

partitioning, interconnection]intercommunication, synchronization, reliability, I]O inter-

face and handling, software structure and programmability, etc. The efficacy of the mul-

tiprocessor depcnds crucially on the application tasks that it executes, and no single mul-

tiprocessor can at present embody the optimal solution to the above issues for general-

purpose computations. Consequently, it has been the general tendency to develop

special-purpose multiprocessors. One such example is real-time multiprocessors whose

primary function is control of critical real-time systems, e.g. aircraft, spacecraft, nuclear

reactor, power distribution and monitoring, etc. Use of multiple processors]memories for

real-time control is motivated by its potential for high operating speed and improved

reliability through component multiplicity [1], [2].1

A rcal-time control system comprises two components: a controlled process and a

computer controller. Despite their synergistic relationship, these two components have

becn designed and analyzed separately in isolation: the former by control scientists and

the latter by computer designers. Moreover, the computer controller design has usually

relied on ad hoc/empirical methods whereas there has been a significant progress in

theory and design of controlled processes. In order to narrow this gap and provide a

bridge between these two components, this report considers the controller with the

lit must, of course, be pointed out that it is hideously easy to develop multiprocessors that actually
perform less efficientlythan their uniprocessorcounterparts.
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controlled processes taken into account.

A computer controller has three communicating functions: data acquisition, data

processing and output functions. The data acquisition is responsible for gathering input

(fcedback) data from sensors, input panels and other associated equipment; the process-

ing function done by the computer (in our case the multiprocessor) generates output

control/display signals from input data and the output function sends the processed

results to mechanical actuators, displays and other output devices. The system may

thus logically be regarded as a three-stage pipe.

The controller software in the processing section consists of a set of tasks, each of

which corresponds to some job to be performed repetitively in response to particular sets

of environmental stimuli. _ The set of tasks to be executed by the controller is predeter-

mined and the stochastic nature and behavior of the software known in advance -- at

least in outline -- to the designer. This fact makes it both easier and more necessary to

obtain a reasonably good performance analysis of the system.

The determining characteristic of a real-tlme multiprocessor's performance is a

combination of reliability and high throughput. The throughput requirements arise from

the need for quick system response to environmental stimuli. Speed is of the essence in a

real-time controller since failure can occur not only through massive hardware failures in

the system, but also on account of the system's not responding .fast enough to events in

the environment.

As a result of these special performance requirements, performance measures used

to characterize general-purpose uniprocessor systems are no longer appropriate for real-

time multiprocessors. Conventional throughput, reliability, and availability by

_I'hese include both regular task triggers according to a predetermined schedule as well as unexpected,
situation-dependent task triggers.



themselves alone have little meaning in the context of control; a suitable combination of

these is necessary. New performance measures are required: measures that are congruent

to the application, permit the expression of specifications that reflect without contortion

true system characteristics and application requirements, in addition to allowing an

objective comparison of rival systems for particular applications.

We cannot stress too heavily that it is meaningless to speak of the performance of a

computer out of the context of its application. The form the performance measures take

must reflect the needs of the application, and the computer system must be modeled

within this context. The multiprocessor controller and the controlled process form a syn-

ergistic pair, and any effort to study the one must take account of the needs of the

other.

It is important that performance measures should depend on variables that can be

definitively estimated or objectively measured. It is our policy in this report, therefore,

to always base performance indices on experimentally-measurable quantities, i.e., con-

troller response times for the various system tasks.

It must also be realized that there is a distinction to be drawn between the meas-

urement of performance parameters and their interpretation. In parameter measurement,

we are concerned, for example, with the ease and accuracy with which the parameter can

be measured. On the other hand, the interpretation consists of a procedure to integrate

the results of the measurement into a complete picture of the computer's performance.

Note here that the different parameter values (reliability, throughput, etc.) can depend

on one another in a quite complex way: we do not have the luxury of assuming that they

are independent of each other. We have either to present computer performance as a

vector (which makes comparison between different systems difficult) or to derive an
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objective metric for the performance vector. It is the purpose of our research to develop

one such metric and then use it for design and analysis of real-time computers.

Performance measures that partially meet real-time requirements have been sug-

gested by the following authors. Beaudry [3] considers measures emanating from the

volume of computation from a computer system over a given period of operation. Mine

and Hatayama [4] consider job-related reliability, by which they mean the probability

that the system will successfully complete a certain job. Huslende [5] attempts to be as

general as possible, and presents what amounts to a re-statement of Markov modeling

with traditional measures. Chou and Abraham [6] present performance-availability

models, Castillo and Siewiorek [7] performance-reliability models. Osaki and Nishio [8]

consider the "reliability of information", by which they mean the expected percentage of

wrong outputs per unit time in steady state.

All these measures consider the computer system in isolation, i.e. without explicit

regard to the requirements of the operating environment. For this reason, they are quite

unsuitable for use in real-time control situations.

Among all existing performance measures, Meyer's performability [9] seems to meet,

though in an abstract form, the real-time requirements discussed above. His measure

explicitly links the application with the computer by listing "accomplishment levels",

which are expressions of how well the computer has performed within the context of the

application. His work focuses on the development of a framework for modeling and per-

formance evaluation, rather than on methodology for deriving the performance measures

themselves. No guidelines are given for appropriately specifying the accomplishment lev-

els: what is provided is a set of mathematical tools for their computation, once they have

been defined. Some recent work by Meyer [10] continues this trend, developing the
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theory of stochastic Petri nets.

By contrast we focus, in this report, on presenting a methodology for objectively

characterizing and determining controller performance. If one wished to translate our

work into the terms of Meyer's performability, we show how to derive a set of uncount-

ably many accomplishmcnt levels that are completely objective and capable of definitive

estimation and/or measurement. It is this that makes our measures complementary to

that of Meyer.

The next step is to apply the performance measures to design and analysis of real-

time computers. For example, one should be able to answer a fundamental design ques-

tion, "what is the optimum redundancy to be built in real-time systems?" As will be seen

later, increasing component redundancy beyond a certain point becomes detrimental to

the dynamic reliability of real-time systems. The performance measures can be used as

(i) criteria for architectural design of real-time computers and (ii) objective tools for

evaluating and comparing rival computers.

This report is organized as follows. In Section 2, real-time controlled systems are

discussed, and Section 3 introduces our performance measures. Section 4 contains two

examples to show how to determine the performance measures; one is an idealized

motion control problem and the other is a more realistic example, the aircraft landing

problem. In Section 5, we explore two important applications of the performance meas-

ures to the design and analysis of real-time computers -- the number-power tradeoff and

synchronization and fault-masking. This report concludes with Section 6.

2. REAL-TIME SYSTEMS

Figure 1 shows the block diagram of a typical real-time control system.
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Figure 1. A Typical Real-Time Control System.



The inputs to the control computer are from sensors that provide data about the

controllcd process, and from the environment. This is typically fed to the control com-

puter at regular intervals. Data rates are usually low: generally fewer than 20 words a

second for each sensor. The job list represents the fact that all the control software is

pre-determined and partitioned into individual jobs.

Central to the operation of the system is the trigger generator that initiates execu-

tion of one or more or the control programs. In most systems, this is physically part of

the controller itself, but we separate them here for purposes of clarity. Triggers can be

classed into three categories.

(1) Time-generated trigger: These are generated at regular intervals, and lead to the

corresponding controller job(s) being initiated at regular intervals. In control

theoretic terms, these are open-loop triggers.

(2) State-generated trigger: These are closed-loop triggers, generated whenever the sys-

tem is in a particular set of states. A simple example is a thermostat that switches

on or off according to the ambient temperature. For practicality, it might be

necessary to space these triggers by more than a specified minimum duration. If

time is to be regarded as an implicit state variable, the time-generated trigger is a

special case of the state-generated trigger. One can also have combinations of the

two.

(3) Operator-generated trigger: The operator can generally over-ride the automatic sys-

tems, generating and cancelling triggers at will.

The output of the controller is fed to the actuators and]or the display panel(s).

Since the actuators are mechanical devices and the displays are meant as a human
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interface, the data rates here are usually very low. Indeed, a control-computer system

generally exhibits a fundamental dichotomy from many points of view. Firstly, the I[O

is carricd out at rather low rates 3 and the computations have to be carried out at very

high rates owing to real-time constraints on control. Secondly, the complexity of the

data processing carried out at the sensors and the actuators is much less than that car-

ried out in the main data-processing area. Thirdly, the sensors, actuators, and the asso-

ciated equipment are entirely dedicated to the performance of a particular set of tasks,

while the hardware in the region where the complex data processing takes place is usu-

ally not dedicated.

It is therefore possible to logically partition real-time computer systems into central

and peripheral areas. The peripheral area consists of the sensors, actuators, displays,

and the associated processing elements used for the pre-processing and formatting of

data that is to be put into the central area, and the "unpacking" of data that are put

out from the central area to the actuators and/or displays. The central area consists of

the processors and associated hardware where all the higher-level computation takes

place. Designing the peripheral area is relatively straightforward; the most difficult

design problems that arise in these systems usually concern the central area. Figure 2

and Table 1 emphasize these points.

A control system executes "missions." These are periods of operation between suc-

cessive periods of maintenance. In the case of aircraft, a mission is usually a single

flight. The operating interval can sometimes be divided down into consecutive sections

that can be distinguished from each other. These sections are called phases. For exam-

ple, Meyer et al. [11] define the following four distinct phases in the mission lifetime of a

3 The only exceptions to this that we know of are control systems that depend on real-time image-
processing. Such applications have extremely high input data rates.
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Peripheral Area Central Area

Low baud rates High baud rates

Complete dedication Complete generality of function

Low-capability processors High-capability processors

Simple interconnection structure Complex interconnection structure

Almost totally decoupled processors Processors highly coupled inmany cases

Trivial executive software Complex executive software

Table 1. Difference between Central and Peripheral Areas.
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civilian aircraft:

(a) Takeoff/cruise until VHF Omnirange (VOR)/Distance Measuring Equipment

(DME) out of range.

(b) Cruise until VOR/DME in range again.

(c) Cruise until landing is to be initiated.

(d) Landing.

The current phase of the controller partially determines its job load, job mix, job

priorities, and so on.

A real-time system typically has to function under more constraints than its

general-purpose counterpart. Firstly, there are hard deadlines, which if missed, can lead

to catastrophic failure. Timing is therefore crucial to job execution. Secondly, there are

physical constraints that are not quite so restricting for the general-purpose computer.

Examples are weight and power consumption.

The applications software has the following properties.

(1) The interaction between individual processes is minimal.

(2) The effects of processes upon one another is well understood.

(3) Clear lines of authority are recognized.

(4) Clear lines of information flow are recognized.

(5) The products of the process are well defined.

These are precisely the five conditions for efficiency in a distributed system as listed by

Fox [12]. Because of this and also due to their potentially high reliability, distributed

systems are particularly suited to real-time use. Also, the problems that arise when one

attempts to partition programs in general-purpose applications for implementation on a
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distributed computer do not usually arise in the real-time context. The software for a

control computer is not so much a single partitionable package, as a set of cleanly

interacting subroutines. Macro-instruction languages show much promise in this con-

text [13].

The constraints on real-time systems as well as the properties of the applications

software have a very great influence on the system architecture and the executive

software.

The overall computer system has to be much more reliable than any of its com-

ponents, so that fault-tolerance is essential. Massive replication of hardware is common-

place, as also are high interconnection-link bandwidths. The system must be as sym-

metric as possible so that reconfiguration is easy.

The nature of the executive software must reflect constraints on time and

resources. The executive is responsible for the control of queues at shared resources, for

the scheduling of events, for the handling of interrupts, and the allocation of memory.

While all these tasks are common to general-purpose systems, the existence of hard

deadlines makes the efficient execution of such activities imperative. The designer of the

real-time system does not have the luxury of assuming that occasional serious degrada-

tion of performance is acceptable, if unfortunate.

An additional important task of the executive is fault-handling and recovery. This

includes reconfiguration where that is possible, and the reallocation of tasks upon failure.

Here again, the constraints on time make this a difficult problem.
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3. THE PERFORMANCE MEASURES

3.1. Terminology and Notation

A real-time computer executes pre-defined control jobs repeatedly, upon environ-

mental or other stimuli. A job is a well-defined stretch of software, e.g., a subroutine.

Each job maps into one or more ta_ks. The mapping is determined by the current state

of the controlled process. This is further clarified later in this Section. System response

time is defined as the time between the initiation/triggering of a control job and the

actuator and/or display output that results. This quantity is the sum of controller

response time and actuation time. Environmental or other occurrences trigger the tasks,

a unique version being created as a result. This is said to be an extant version as long as

it continues to execute in the system. Versions of task i are denoted by VO.,which

represents the j-th execution of task i. Denote the response time of a no-longer-extant

version Vii by RESP(Vii ). The response time of an extant version is undefined. The

extant time of a version Vii triggered at time rii when the system is in state nii is given

by E( Vipripnipt) = min(t-rip RESP( Vii)).4

A controller task is said to be critical if it has an associated hard deadline [14],

which if exceeded by any of itg versions, results in catastrophic or dynamic failure. Hard

deadlines do not exist for non-critical tasks.

Ordinarily, repair to the real-time computer is not allowed while the computer is in

operation. In this connection, we define the mission lifetime as the duration of operation

between successive stages of service. We let the mission lifetime be a random variable

with probability distribution function L(t). At the beginning of a mission (i.e. immedi-

*This does not imply that no state changes occur during the course of a task execution. RESP( Vii ) is
an implicit function of nij.
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ately after service), a system is assumed to be free of faults.

3.2. Definition of the Performance Measures

Our performance measures are all based on the extant and response times. For crit-

ical tasks i, with hard deadlines t,li,the cost function is defined by:

{_E) if O_<=_<td,C,(E) _ if = > t_i (1)

where gi is called the finite cost function of task i, and is only defined in the interval

[0, tdi],and we omit for notational convenience the arguments of =., the extant time.

For non-critical tasks, the same definition for the cost function can be used, with

the associated hard deadline set at infinity.

Let q,(t) denote the number of times task i is initiated in the interval [O,t). Then,

the cumulative cost function for the task i is defined as

q,(O

r,(t)- E C,(E(Vii,r,j,nij,t)) (2)
j=l

and the system cost function is defined as

F

s(t)-- Er,(t) (3)
i:1

where r is the number of tasks in the system. Both F, and S are clearly defective random

variables. Our performance measures are then given by:

O0

Coat Index, K(X) _ f Prob{S(t)<x}dL(t) (4)
o

O0

Probability of dynamic failure, p@. _ f Prob{S(t)=oo}dL(t) (5)
o

14



so

Mean Co_t, M_ f E {${t)] n0 hard deadlinesare misacd}dL(t) (O)
0

O0

Varia.ceCost,V-- f Vat{S(t)I.oharddeadlinesaremissed}dL(t) (7)
0

where E{s[s} and Yar{s]s} represent conditional expectation and variance, respectivcly.

The probability of dynamic failure subsumes the traditional probability of failure {called

here for distinction the probability of static failure ) since the latter can be viewed as the

probability that the expected system response time is infinity. Clearly, in the case of

non-critical tasks, the probabilities of static and of dynamic failure are equal.

The following auxiliary measures are useful when one focuses on the contribution to

the cost of individual tasks.

so

Cost Indez for Task i, K,(X) _- f Prob{r_t)<x}dlJt) (4a)
o

O0

Mean Cost for task i, Mi _ f E {r',(t)Ino hard deadlines are missed}dL(t) (5a)
o

so

Variance Cost for task i, Vi_ f Var {I',(t) l no hard deadlines are missed}dL(t) (7a)
0

The computation of these measures can sometimes be complicated by the fact that the

mission might end while one or more versions are still extant. In most instances, how-

ever, the mission lifetimes are very much longer than individual task execution tlmes S

and the number of times tasks are executed to completion before the mission ends is also

very large. For this reason, it is usually an acceptable approximation to compute the

costs assuming that all jobs that enter the system during the mission complete executing

before the mission ends (as long as they do not miss any hard deadlines}.

5For example, it could be several hours for aircraft and several days or even months for spacecraft.
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In what follows, we consider how to determine these performance measures, begin-

ning with the determination of the hard deadline.

3.3. Obtaining the Hard Deadline

The dynamics and the nature of the operating environment of the critical process

are both known a priori. This follows from the critical nature of the process -- for exam-

ple, the dynamics and operating environment of aircraft have both been studied care-

fully -- and advances in the theory and design of controlled processes.

The process can most conveniently be expressed by a state-space s model. Let xER n

denote the process state, uCR m the input vector, and t the time. The input vector is

made up of two sub-vectors, ucER rn'and ueER m°.u € denotes the input delivered at the

command of the computer, and u, the input generated and then applied by the operat-

ing environment. We characterize state transitions by the mapping ¢:TX TXXX U-*X

where TCR represents time, XCR n the state-space and UCR 'n the input space.

x(t) : _b(t, to,x(to),U) (ga)

Measurement of the system is described by a vector yER t and a mapping q'.XXU× T.

y(t) = I/(x(t),u(t),t) (gb)

Catastrophic failure can follow if the process leaves the "safe" region of the state

space. For example, a boiler may explode if its temperature becomes too high. This is

formally expressed by defining an allowed 8tare #pace, Xa(t), which defines the "safe"

region of operation.

€'The term "state" here has the control-theoretic meaning, and is not the same as the one frequently
used in computer performance analysis.
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The task of the controller or real-time computer is to derive the optimal control,

u c(t), as a function of the perceived process state. Since the response time, denoted by

w, is positive, we have uc(t ) = h(x(t-w),ue(t-w),t ) where h expresses the control algo-

rithm for the task in question. Then, the hard deadline associated with this task is

given by the maximum value of w that may be permitted if the process is to remain in

X_ with probability one. More precisely, the hard deadline associated with controller

task _ triggered at to when the system is in state x(t0) is given by:

t_(x(t0)) = ;"f sup{rl _(t0+r, t0,x(t0),u)_Xo} (10)uCI2CU

where fl is the admissible input space. One can also define conditional hard deadlines if

it is only required to perform the computation over a certain subset of the admissible

input or state space. The conditional hard deadline of task a, denoted by tdol_,a, is

defined as

t_l_,a(x(t0) ) _ inf $up{r I ¢(to+r, to,x(to),U)EaCXa} (11)uCwCfl

The hard deadline, defined in this general way, is a function both of the process

state at the moment of task initiation, and of time. It is a random variable if the

environment is stochastic. Consider the following example to see how the hard deadline

can be determined.

Example 1: A body of mass m is constrained to move in one dimension. Its state-

vector consists of three components: position (zl), velocity (z2), and acceleration (z3). The

allowed state-space is defined by Xa={x [ I ,l<b, where b>0 is a con-

stant. The body is subject to impact from either direction with equal probability. Each

impact changes the velocity of the body by k_>0 units, in the appropriate direction. The

change of velocity takes place in a negligible duration. The body has devices that can
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exert thrust of magnitude H in either direction. This thrust is imposed only after the

controller has recognized an impact and has determined how to react to it. It takes a

negligible amount of time to switch the thrust on or off in either direction. The
I

controller's job is to bring the body to x-----0.The controller operates in open-loop; when

it recognizes an impact, it computes the thrusts as a function of time, following which

the control response is assumed to be instantaneous. The problem now is to compute

the hard deadline associated with this task.

The hard deadline is only a function of the state and X a. In computing it, we do

not need to take into account the possibility of a second impact before the controller has

finished responding to the first, since the state of the process contains all necessary infor-

mation.

The allowed state space is static and simply connected, so that if when the body is

brought to rest for the first time following the impact it is in Xa, it must have been

within X a throughout the period following the impact, assuming only that it was within

X a at the moment of impact. Therefore, we have only to compute the position of the

body when it first comes to rest (after the impact) as a function of the response time, _,

and set the hard deadline equal to the largest _ for which the body comes to rest within

X a. Let the initial state of the body be x_=[zli , z2i, zai]. Since the impact duration and

the switch-off or on time for the thrust are assumed to be zero, we can always take

xai_O. Define

m k" I, --1 7f 11ti -- I -n

By an elementary derivation, we arrive at the following.

Case 1, _i<-k :
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H_
H_ b+ x. +(,2,-*)t2+ _ (12)t_ (xi)=min b + zli + (z2,-I-k)tI + 2--'m

-(z2i+ k) ' k- _2i

For future convenience, denote the right hand side of the above by tO).

Case g, Iz2;l<k:

H_
ta(Xi)=min b - xli- (z2,+k)t I + 2---m b + xli + (x2_-k)t2 + "_m (13)

z2i + k ' k- z2i

Denote the right hand side of the above equation by t(2).

Case 3, z2i>k:

Ht_
H_ b- zxi-(z2_-k)t 2 + "_m (14)Q(xi)=min b - xli- (x2,+k)tl + 2"--m

z2i + k ' z2i- k

Denote the right hand side of the above equation by t(3).

If the velocity imparted to the body upon an impact is not constant at k, but is a

random variable (which would be more realistic) the magnitude of which has probability

distribution function Fimp,ct, then the hard deadline will be a random variable, whose

distribution is a function of the state at the moment of impact. The following can be

written down by inspection:

Case 1, z2i < 0:

t 2) with probability F_mp,a (l_2d)td (x;) = t(t) with probability 1 - Fi,,,p,a (l_2d) (15)

Case 2, x2i>0:
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t{2) withV,'obabmtu 1 - F_,_pact(]x2;])t_(x;) = t(3} withprobabilitUFi,_pact(]_iJ)
(16)

We could similarly treat the easewhen the allowed state-space is stochastic.

The above example is meant only to illustrate the hard deadlines and should not

lull the reader into a false sense of security. Obtaining closed-formexpressions for the

deadlines of any but the most trivial systems and static allowed space is usually

extremely difficult, if not impossible.For example, if we relax the assumption that the

controlleracts in open-loop, the equations of motion becometoo difficult to solveexactly

in closedform.

It is generally necessary to resort to numerical methods to obtain deadlines for

real-life systems. Since most of the state-spaces one uses in practice have uneountably

many points, we must define hard deadlines as functions of sets of states, not of the

states themselves if the entire allowed state-space is to be covered. Subdividing the

state-space into these subsets while keeping errorslow is not always easy. For an exam-

ple of subdivisionwhere the application is the control of aircraft elevator deflections, see

the case study that followsin Section 4.

A further remark is in order here. The hard deadlines are not dependent upon the

performance functional (time, energy, etc.) that the controller is attempting to optimize,

since the paramount duty of the controller is to keep the system within the allowed

state-space, and only secondarily to optimize the performance functional.

3.4. Obtaining the Finite Cost Functions

Performance functionals have been known for a long time in control theory as

optimization criteria and measures of controlled process performance.We exploit this
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fact to derive the control-computer cost functions, by linking directly the performance of

the controller to the value of the controlled process performance functional that results.

Performance functionals in control theory are functionals of system state and input

and express the cost of running the process over some interval [to, t!]. The performance

functionals can be stated as:

t!

e(x0, to, t/)-_ ftoE[fo(x(t), u(t), x0, t)] y(r), to <_ r <_ t]dt (17)

where x(t0)----x0, and f0 is the instantaneous performance functional. Since the con-

troller response time affects the state trajectory of the controlled process, it affects the

performance functional as well. If we use the expected contribution to the performance

functional, e(x0, to, t!), of the control delivered as a result of executing task i with

response time _, we can derive the finite cost function as:

- fl(x,0)for0 _< _<
g,(x,_) (18)( 0 otherwise

where f}(x,_) denotes the contribution to O(x0, to, t/) of a task with response time _, and

initiated when the process state was x. By doing so, we can directly couple the response

time of the controller to the fuel, energy, or other commodity by the controlled process.

See Figure 3.

Notice that while we use response time to compute the cost function, the finite

costs were originally defined as functions of the extant time. The latter is the case since

we wish costs to accrue as the execution proceeds, so that the system cost function is

contimmus. This ensures if two systems are compared under an identical load with the

first faster than the second with regard to a particular task, that the faster system will

nevqr exhibit a mean cost greater than the slower system as long as both have approxi-
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Figure 3. Illustration of Cost Functions.
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mately the same probability of dynamic failure.

The possibility of correlation of successive tasks can complicate calculations consid-

erably. To see this, take the system in the example above. If a second impact comes in

before the system has finished reacting to the first, then, the energy or time to be

expended will not, in general, be the sum of the energies or the times that would have to

be expended if the second impact had arrived after the system had finished reacting to

the first (i.e. had arrived at x=0). Assuming that successive tasks are decoupled leads

to a certain measure of, double-counting" of the energy or time spent. The same remark

would apply to fuel, force, or any other performance functional used for the controlled

process.

Due to this double-counting, assuming that successive tasks are decoupled leads to

an upper bound to the energy, time, or other quantity expended. If we find an upper

bound acceptable, we can simplify our computations greatly. If exact figures are called

for, a detailed and complicated model has to be worked out in which each instance of

inter-task coupling is itemized and its probability of occurrence computed. Whether or

not this is worth the effort depends entirely on the requirements of the analysis.

There is also an irritating anomaly. Since the mean costs are defined by an expecta-

tion that is conditioned on not failing in the mission lifetime, it is possible to construct

pathological examples where a system with a probability of dynamic failure of, say, 0.5

over a given lifetime, will exhibit a lower mean cost over that lifetime than another that

has a p_y, of 10-1°: we shall see examples of them in Section 5. Such cases are, however,

generally no more than an academic curiosity.

Example 2: Consider again the controlled process described in Example 1. This time,

we set out to compute the finite cost function associated with the task under review.
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As before, assume that the state of the body at the moment of impact is given by

xr=[zli, z2i,z3i]. We make the assumption that a function that provides an upper bound

of the cost expended is sufficient, so that it is not necessary to consider the correlative

effect of successive jobs. We provide cost functions relating to two different control poli-

cies.

Case A" Assume that the duty of the controller is to bring the body back to x_0

within as short a time period as possible. (Note that x=0 means that all three com-

ponents -- position, velocity, and aceeleration -- are zero). The cost function is the time

taken. This is the well-known minimum-time problem in optimal control theory [15]. If,

after the impact, the body is moving away from xl=0, it must be stopped, and brought

back using bang-bang control. If it is moving toward xl=0, depending on the velocity

after impaet and the response time of the controller, the body is either fimt aceelerated

toward xl=0 and then decelerated, or first brought to a stop on the other side of zl=0

and then brought back to the origin using bang-bang control. The derivation of the

time taken is elementary, if tedious, and is excluded. See the Appendix for expressions

of the finite cost function under such a control policy. The case when the velocity

imparted upon impact is not constant, but a random variable, can be handled as in

Example 1.

Case B: Suppose the controller is to minimize the energy expended while, after every

impact, keeping the body within the allowed state-space. Then, the control policy is

simply to bring the system to rest anywhere inside Xa, and the cost function is in terms

of energy. If the controller computer responds to an impact within the hard deadline, it

can by definition, keep the system from failing. As may easily be verified, the energy

expended in doing this is the energy required to bring the body to rest, which is equal to

the energy of the body immediately after impact. Therefore, as long as the allowed
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state-space is not violated, the energy expended will remain the same no matter what

the response time (assuming that the response time is within the hard deadlines derived

in the preceding section). So, the finite cost function over the entire allowed state-space

is here the zero function, which signifies that, as long as the hard deadlines are honored,

it makes no difference to the overhead under thia control policy, as to what the response

time may be.

This example has served to emphasize the intimate relation between control policy

and controller (finite) cost function. The same system, with the same constraints on the

allowed state-space, has different cost functions based on what the duty of the controller

is. It reflects our goal of having the cost functions express the control overhead in the

contezt of the application. This, in fact, distinguishes our measures from those extant in

the literature. See Table 2 for a comparison between our measures and those of others.

Once again, it should be noted that the simplicity of the above expository examples

does not usually exist in real-life systems. Real-life analyses are much more difficult, and

the same comments as applied to P@n above apply to the mean cost, also. There is also

one additional complication. The controller is to optimize the performance functional

subject to the condition that the system must not leave the allowed state-space, if this is

at all possible. Such a difficulty did not arise in this simple example, but it can some-

times prove difficult to obtain optimal control policies under this requirement. This,

however, is a problem for the designer of the controlled process, not of the controlling

computer.

See Section 4 for a computation of the cost function in a realistic case.
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Other Measures Our Measures

Wide applicability to almost all Limited Applicability. Aims
applications of fault-tolerant, specifically at real-time, especially
gracefully-degrading systems, at control, application.

Measures express performance in Measures express performance in
rather gross terms, rather exact terms.

Performance linked to charac- Performance measures specifically
teristics of the computer alone, designed to reflect the overhead

of the computer on the real-time
system.

Table 2. Comparison of Traditional and New Methods of Characterizing Per-
formance
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3.5. Remark on Finite Cost Functions

It is not necessary that the process performance functional that is used to derive

the cost function (e.g. energy, fuel, time, etc.) be the same as the process performance

functional that the system is trying to optimize. For example, the system may be given

the task of optimizing fuel, and the cost function may be measuring the extra energy

consumed as a result of controller delay. However care should be taken to ensure that

the two functionals (the one used to optimize the process, and the one used to express

the cost with) do not conflict. For the functionals not to conflict, the optimal control

actions (i.e. the controller decisions) taken on the basis of one functional should bc ident-

ical to the optimal control actions that would have been taken on the basis of the other.

For example, if the fuel consumed were linearly related to the energy expended, the cost

function could be expressed in terms of energy, while the controller was trying to minim-

ize the fucl used.

To see why conflicts must not be allowed, assume in the system of the above exam-

ple, that the job of the controller is to minimize the time taken in bringing the body

back to the origin, while the cost function is in terms of energy. Take the instance in

which the speed of the body after the impact is a slow motion toward xl=0. The con-

troller should in such a case apply full thrust throughout the motion, first speeding the

body up toward xl=0 , and then slowing it down to reach x-----0in minimum time. How-

ever, since the cost function is in terms of energy, not time, it is easy to see that the

shorter the time period over which the controller exerts thrust, the smaller is the value

of the cost measured. Thus, over a certain range of states, the cost function would actu-

ally decrease with an increase in response time. This is not only counter-intuitive, but

also results in inefficient operation. Task priorities, scheduling policies, etc., for the con-
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trol computer are meant to be derived to optimize the mean cost as expressed by the

cost functions. If inconsistencies such as the above arose, the operating system of the

controller would tend to oppose the goals inherent in its own applications software,

resulting in an unsatisfactory overall computer-controlled system.

3.0. Allowed State-Space and Its Decomposition

As we said above, it is difficult to determine the hard deadline and the finite cost

function as a function of the state over the entire state space. The solution of the con-

trolled process state equations cannot usually be obtained in closed form when controller

delay is considered. To obtain the functional dependence of the hard deadlines or the

finite cost function of each controller job on the current state vector is therefore impossi-

ble to do analytically, and prohibitively expensive to do numerically for a large number

of sample states.

To get around this problem, we divide the allowed state-space down into 8ubspaces.

Subspaces are aggregates of states in which the system exhibits roughly the same

behavior. 7 In each subspace, each critical controller job has a unique hard deadline.

Remark: In some subspaces, a job described in general as "critical" might not be criti-

cal in the sense that even if the execution delay associated with it is infinity, catas-

trophic failure does not occur. That is, the associated hard deadline may be infinity for

a particular subspace. What doe_ usually happen in these circumstances is that the sys-

tem moves into a new subspace -- or at the least toward the subspace boundary -- in

which the dangers of catastrophic failure are greater. In this subspace, the requirements

on controller delay are more stringent, and there might well be a hard deadline,

¢Even if there do not exist clear boundaries for these subspaces, one can always force the allowed state
space to be divided into subspaces so that a sufficient safety margin can be provided. This is a designer's
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representing a critical task. Thus a "critical" job need not be truly critical in every sub-

space, it only has to map into a critical task -- defined in the sequel -- in at least one

subspace. Also, subspaces are job-related, i.e. the same allowed state space can divide

into a different set of subspaces for each control job.

For convenience, a controller "task" is defined as follows.

Definition: A controller task, often abbreviated to "task", is defined as a controller job

operating within a designated subspace of the allowed state space.

Let S i for i--0,1,...,s be disjoint subspaces of X A with X A m_ US i and let J denote a

controller job. Then, we need the projection:( J, XA) _ ((To, So), (T1, $1), ...,(T,, S,))

where T; is the controller task generated by executing Jin S i. With each controller task,

we may now define a hard deadline without the coupling problem mentioned above. We

denote it by t_i for critical task Ti (for convenience, however, the superscript J will be

omitted in the sequel). We will see that a critical job can possibly map into a non-

critical task for one or more allowed subspace; it only needs to map into a critical task

in at least one such subspace to be considered critical.

3.6.1. Allowed State-Space

The allowed state-space is the set of states that the system must not leave if catas-

trophic failure is not to occur. Consider the two sets of states X_ and _A defined as fol-

lows.

(i) X 1 isthe setof statesthatthesystemmust residein ifcatastrophicfailureisnot

to occur immediately.For examlSle,we may definein the caseof an aircraft,a

choiceforapproximation.
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situation in which the aircraft flies upside down as unacceptable to the passengers

and as constituting failure. Notice that terminal constraints are not taken into con-

sideration here unless the task in question is executed just prior to mission termina-

tion.

(ii) _A is the set of acceptable states given the terminal constraints, i.e., it is the set of

states from which, given the constraints on the control, it becomes possible to

satisfy the terminal constraints.

Note that leaving X_ means that no matter how good our subsequent control, failure

has occurred. 8 On the other hand, altering the allowed input space, i.e. changing the

control available can affect the set X_. The allowed state space is then defined as

xa - n

Obtaining state-space X_A can be difficult in practice. The curse of dimensionality

ensures that even systems with four or five state variables make unacceptable demands

on computation resources for the accurate determination of the allowed state-space.

However, while it can be very difficult to obtain the entire allowed state-space, it is

somewhat easier to obtain a reasonably large subset, X_CXA. By defining this subset as

the actual allowed state-space, (i.e., by artificially restricting the range of allowed states),

we make a conservative estimate for the allowed state-space. Note that by making a

conservative approximation, we err on the side of safety. Also, the information we need

about X A may be determined to as much precision as we are willing to invest in comput-

ing resources.

s Strictly speaking, of course, there can be no subsequent control since by leaving X 1 the system has
failed catastrophically before the next control could be implemented.
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In what follows, to avoid needless pedantry, we shall refer to the artificially res-

tricted allowedstate-space, X_, simply as the, allowedstate-space", XA.

3.6.2. On Obtaining the Subspaces

The job of dividing X A into S ----(So, $1, ..., $8) is sometimes made easy by the

existence of natural cleavages in the state-space, when the latter is viewed as an influ-

ence on system behavior. In most cases, however, such conveniences do not exist, and

artificial means must be found. The problem then becomes one of finding discrete subdi-

visions of a continuum.

The method we employ is to quantize the state continuum in much the same way

as analog signals are quantized into digital ones. Intervals of hard deadlines and

expected operating cost (i.e. the mean of the cost function conditioned on the controller

delay time, and using the distribution of the latter) are defined. Then, points are allo-

cated to subspaces corresponding to these intervals. To take a concrete example, con-

sider a state-space XCR n that is to be subdivided on the basis of the hard deadlines.

The first step is to define a quantization for the hard deadlines. Let this be A. Then,

define subspace Si as containing all states in which the hard deadline lies in the interval

[(i-1)A, iA). Alternatively, one might define a sequence of numbers A1, A2, ..., such

that the subspaces were defined by intervals with the AI s as their end-points. This

would correspond to quantizing with variable step sizes. The subspace in which the job

under consideration maps into a non-critical task is a special case and is denoted by S0.

Subspaces can also be defined based on a quantization of the expected operating

cost or on both the operating cost and the hard deadlines. We provide an example of

subdivision by hard deadlines in Section 4.
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The size of each subspace will depend on the process state equations, the environ-

ment, and how much computing effort it is judged to be worth spending on obtaining

the subspaces. Naturally, everything else being equal, the smaller a subspace the greater

the accuracy of the inherent approximation. _

4. CASE STUDY

A control system executes "missions." These are periods of operation between suc-

cessive periods of maintenance. In the case of aircraft, a mission is usually a single

flight. The operating interval can sometimes be divided down into consecutive sections

that can be distinguished from each other. These sections are called phase,. As pointed

out in Section 2, Meyer et al. [11] define four distinct phases in the mission lifetime of a

civilian aircraft. The phase to be considered here is landing, it takes about 20 seconds.

The controller job that we shall treat is the control of the aircraft elevator deflection

during landing. 1°

The specific system employed is assumed to be organized as shown in Figure 4.

Sensors report on the four key parameters: altitude, descent rate, pitch angle, and pitch

angle rate every 60 milli-seconds, it We have a time-generated trigger, with a time period

of 60 milli-seconds. Every 60 milli-seconds, the controller computes the optimal setting

for the elevator, which is the only actuator used in the landing phase. 12 The execution

time for the computation is nominally 20 milli-seconds, although this can vary in

The error that ensues as a result of quantization of the state space can be estimated in the same way
that quantization error is estimated in signal processing theory.

lo The output of the controller is assumed to be fed into a peripheral processor that is dedicated to con-
trolling the actuator -- in this case the elevator.

11 The sensors and actuators are assumed to have their own dedicated processors for I/O purposes.
When we speak of "controller delay," we also include the delay in these processors. Also, the period of 60
milli-seconds is arbitrary, and the choice of this period does not alter the method developed here.

12There are other actuators used aboard the aircraft for purposes of stability, horizontal speed control,
etc. We do not however consider them here, concentratin$ exclusively on the control of the elevator.
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practice due to failures. Since the aircraft is a dynamical system, the effects of con-

trollerdelay are considerable-- as we shall see in this Section.

Since the process being controlledis critical (i.e. in which some failures can lead to

catastrophic consequences),variations of controllerdelay and other abnormal behavior

by the controllermust be explicitlyconsidered.For simplicity, we do not allow job pipe-

lining in the controller;in other words a controllerjob must be completed or abandoned

beforeits successorcan be initiated. The followingcontrollerabnormalitiescan occur:

(i) The controllerordersan incorrectoutput to the actuator.

(ii) The controllertakes substantially more than 20 milli-seconds(the nominal execu-

tion time) but less than the inter-triggerinterval of 80 milli-secondsto complete

executing.

(iii) The controllertakes more than 60 milli-secondsto complete executing. In such a

case, the abnormal job is abandoned and the new one initiated. We say that a

control trigger is "missed" whenthis happens.

An analysis of controller performance during the landing phase must take each of the

above abnormalities into account.

4.1. The Controlled Process

The model and the optimal control solution used are due to Ellert and Merriam

[16].

The aircraft dynamics are characterized by the equations:

_l(t) = bllxl(t)+b12z2(t)+bl_za(t)+Cllml(t,_) (19a)

_2(t) = x,(t) (19b)
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_3(t)= bz2z2(t)q-b33z3(t) (19c)

_4(t)= x3(t) (19d)

where z2 is the pitch angle, zI the pitch angle rate, z3 the altitude rate, and z4 the alti-

tude. mI denotes the elevator deflection, which is the sole control employed. The con-

stants bii and cl1 are given in Table 3. Recall that _tdenotes controllerresponsetime.

The phase of landing takes about 20 seconds.Initially, the aircraft is at an altitude

of 100 feet, travelling at a horizontal speed of 256 feet/see. This latter velocity is

assumed to be held constant over the entire landing interval. The rate of ascent at the

beginning of this phase is -20 feet/see. The pitch angle is ideally to be held constant at

2 °. Also, the motion of the elevator is restrictedby mechanicalstops. It is constrained

to be between -35 ° and 15 °. For linear operation, the elevator may not operate against

the elevator stops for nonzero periods of time during this phase. Saturation effects are

not considered.Also not consideredare wind gusts and other random environmental

effects.

The constraints are as follows: The pitch angle must lie between 0 ° and 10 ° to

avoid landing on the nose-wheelor on the tail, and the angle of attack (see Figure 5)

must be held to less than 18 ° to avoid stalling. The vertical speed with which the air-

craft touches down must be less than around 2 feet/see so that the undercarriage can

withstand the force of landing.

The desired altitude trajectory is given by

lOOet/sO<_t<_15 (20)h,_t) = 20-t 15<t<20

while the desired rate of ascent is
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Feedback Term Value

bll -0.600

b12 -0.760

b13 0.003

b32 102.4

b33 -0.4

cll -2.374

Table 3. Feedback Equation Constant
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ha(t) .-_ ¢1 -20e-t/5 0<t<15 (21)-I 15<t<20

The desired pitch angle is 2 ° and the desired pitch angle rate is 0 ° per sec.

The performance index (for the aircraft) chosen by Ellert and Merriam and suitably

adapted here to take account of the nonzero controller response time _ is given by

tl

o(_)-- f e_t,_)dt (22)
to

where t represents time, and [to, t_ is the interval under consideration, and where

era(t,_)= €,(t)[h_t)-_(t)]2+€h(t)[h_t)-_3(t)]2+€_t)[_2_t)-_(t)]2
+€e(O[_1_(t)-_1(t)12+[.,_(t,_)l2

where the d-subscripts denote the desired (i.e. ideal) trajectory. To ensure that the

touch-down conditions are met, the weights € must be impulse weighted. Thus we

define:

Ch(t) = €4(t) + €_,,_(20-t) (23a)

€h(t) = €s(t) + €3.,/_(20-t) (23b)

Co(t) = €2,,_(t)_(20-t) (23c)

€0(t) = €1(t) (23d)

where the functions € must be given suitable values, and 6 denotes the Dirac-delta func-

tion. The values of the € are given based on a study of the trajectory that results. The

chosen values are listed in Table 4.

The control law for the elevator deflection is given by:

m1( t,_) = ws2g, Ts[ku (t-_)-k 1,( t-_)x,(t- _)-k12(t- _)z2(t-_)

-k_3(t-_)_3(t-_)-k,4(t-_)_4(t-_)l . (24)
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Weighting Factor Value

_,(t) oo.o

_2,t_t) 20.0

_3(t)(0<t<l_) o.o
_3(t) (15<t<20) 0.0001

_3,t/ 1.000

_b4 0.00005
_4,t/ 0.001

Table 4. Weights for the Performance Index
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where the aircraft parameters are given by: Ks _--0.95 see-1, Ts = 2.5 see,

_8 = 1 radian sec-1 and the constants k are the feedback parameters derived (as shown

in [16]) by solving the Riccatian differential equations that result upon minimizing the

process performance index. For these differential equations we refer the reader to [16].

4.2. Derivation of Performance Measures

We consider here only one controller task: that of computing the elevator deflection

so as to follow the desired landing trajectory. The inputs for the controller here are the

sensed values of the four states.

We seek the following information. As the controller delay increases, how much

extra overhead is added to the performance index? Also, it is intuitively obvious that

too great a delay will lead to a violation of the terminal (landing) conditions, thus result-

ing in a plane crash. This corresponds to dynamic failure, and we are naturally

interested in determining the range of controller delays that permit a safe landing.

Consider first a formal treatment of the problem. The control problem is of the

linear feedback form. The state equations can be expressed as:

x(t) = Ax(t) + Bu(t) (25)

where the symbols have their traditional meanings. Define the feedback matrix by E(t).

Then, clearly,

u(t) = E(t-_x(t-_) (20)

For a small controller delay (i.e., a small _), the above can be expanded in a Taylor

series and the terms of second order and higher discarded for a linear approximation. By

carrying out the obvious mathematical steps, we arrive at the equation:

x(t) = E(t,_)x(t) + g_) (27)
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as representing the behavior of the controlled process, assuming that the initial condi-

tions are given. For further details, see Figure 6.

Given a closed-form expression for the kij(t) that appear in E(t,_), we could then

proceed to study the characteristics of the system as a function of the matrix E. How-

ever, in the absence of such closed formulations for the kii , we must take recourse to the

less elegant medium of numerical solution.

The procedures we follow for obtaining the numerical solution are as follows. First,

the feedback values are computed by solving the feedback differential equations that

define the kii. These are not affected by the magnitude of the controller delay. Then, the

state equations are solved as simultaneous differential equations. These are used to check

that the terminal constraints have been satisfied, and in the event that they are the per-

formance functional is evaluated. This procedure must be repeated for each new sub-

space. Since the environment is deterministic in this case (no wind gusts or other random

disturbances are permitted in the model), the hard deadline associated with each process

subspaee is a constant and not a random variable.

The trajectory followed by the aircraft when the delay is less than about 60 milli-

seconds follows the optimal trajectory closely although the elevator deflections required

would be intuitively assumed to increase as the delay increases. Also, the susceptibility

of the process to failure in the presence of incorrect or no input is expected to rise with

the introduction of random environmental effects.

The control that is required for various values of controller delay is shown in Figure

7. Due to the absence of any random effects, elevator deflections for all the delays con-

sidered tend to the same value as "the end of the landing phase (20 seconds) is

approached, although much larger controls are needed initially. In the presence of ran-
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all a12 a13 a141

where

all ffi [1-c_lkzl( t){]-1 [bn-kn( t)c_x-c21_{_b_t). 2bnklz ( t)+k12(t)-c_l_l ( t)}]

a12_ [1-_xk11( t)_]-1 [b12-c_lk12( t)-c_l{{ bnkx2( t)+ bx2kn(t)-I-k22(t)-c21_1( t)}]

al 3 ____[l_c_lkn(t){] -1 [b13-c21kl_(t)+bxskn( t)+k23 (t)-c211kn( t)kxa( t)}]

a14= [1-c121klx(t)_]-_[-kz4(t)-bnkl4(t)_-k24(t)_q-c21kn(t)k14(t)_]

b32-----Horizontal Velocity/T,

b33= -1/T.

When the execution delay is _, the approximate state equations are

x( t) __ E( t,_)x( t) + I c21[kt(t)+ _{_'_ t)'O_(t)+ blil( t)+ k2(t_-c2nkl( t)k11(t)}]]

Figure 0. The Approximate State Equations.
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dora effects, the divergence between controls needed in the low and the high delay values

of controller delay is even more marked. We present an example of this in Figure 8. The

random effect considered here is the elevator being stuck at -35 ° for 60 milli-seconds 8

seconds into the landing phase due to a faulty controller order. The controlled process is

assumed in Figure 8 to be in the subspace in which the landing job maps into a non-

critical process (defined in the sequel as S0). The diagrams speak for themselves. We

shall show later that this demand on control is fully represented by the nature of the

derived cost function. Also, above a certain threshold value for controller delay, we

would expect the system to become unstable. This is indeed the case in the present prob-

lem, although this point occurs beyond a delay of 60 milli-seconds for all points in the

allowed state space (obtained in the next section), which cannot by definition occur

here.

4.2.1. Allowed State Space

In this subsection, we derive the allowed state space of the aircraft system. To do

so, note that in Ellert and Merriam's model, X_t does not exist. The reason is that the

state equations do not take into account the angle of attack. In the idealized model we

are considering, it is implicitly assumed that the constraint on the angle of attack is

always honored, so that the only constraints to be considered are the terminal con-

straints.

The terminal constraints have been given earlier but are repeated here for conveni-

ence. The touchdown speed must be less than 2 feet]sec in the vertical direction, and

the pitch angle at touchdown must lie between 0 ° and 10 °. To avoid overshooting the

runway, touchdown must occur at between 4864 and 5120 feet in the horizontal direc-
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tion from the moment the landing phase begins. The horizontal velocity is assumed to be

kept constant throughout the landing phase at 256 feet/see. 13 Thus, touchdown should

occur between 19 and 20 seconds after the descent phase begins. 14 The only control is

the elevator deflection which must be kept between -35 ° and 15 °

Since the only constraints employed are terminal, the allowed state-space is exactly

the set of states from which the terminal constraints can be satisfied. X_ is therefore a

reachability set in control-theoretic terms. However, finding the entire allowed state-

space can be computationally expensive, so we follow a cheaper alternative. The initial

conditions of the process as it enters the landing stage are known. Also known is that

the controller is triggered every 60 milli-seconds. It is assumed that the computations

take a minimum of 20 milli-seconds to complete. Using these data, it becomes possible

to determine that portion of the allowed state-space that the controlled process is ever

likely to enter to a good approximation. In Figure 9, we plot the range of allowed state

values that we obtain. As indeed it should be, the allowed state-space is a function of

time.

4.2.2. Designation of Subspaces

We subdivide the allowed state-space found above using the method described in

Section 3. The criterion used is the hard deadline, since the finite cost function (derived

in the next subsection) is found not to vary greatly within the whole of the allowed

state-space. The value of A chosen is 60 miili-seconds. In other words, we wish to con-

sider only the case where a trigger is "missed."

13We do not consider here how that is to be done; in practice this will constitute a second controller
job. We do not treat this here.

14This makes time an "implicit" state variable.
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Figure 9(a). Allowed State Space: Altitude
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The allowed state-space in Figure 0 is subdivided into two subspaces, SOand S1.

These correspond to the deadline intervals [120, _) and [60, 120) respectively. So is the

non-critical region corresponding to the [120, co) interval. Here, even if the controller

exhibits any of the abnormalities considered earlier, the airplane will not crash. In other

words, if the controller orders an incorrect output, exhibits an abnormal execution delay

or simply provides no output at all before the following trigger, the process will still sur-

vive at the end of the current inter-trigger interval if, at the beginning of that interval,

it was in SO.

On the other hand, if the process is in Sl at the beginning of an inter-trigger inter-

val, it may safely endure a delay in controller response. However, if the controller

behaves abnormally in either providing no output at all for the current trigger cycle or

in ordering an incorrect output, there is a positive probability of an air crash.

Notice that we explicitly consider only missing a single trigger, not the case when

two or more triggers might be missed in sequence. This is because dynamic failure is

treated here as a function of the state at the moment of triggering. If two successive

triggers are missed, for example, we have to consider two distinct states, namely the

states the process is in at the moment of those respective triggers. To speak of deadline

intervals beyond 120 milli-seconds is therefore meaningless in this case since the triggers

occur once every 60 milli-seconds. This is why the second deadline interval considered is

[120,oo),not[120,180).

The harddeadlinemay conservativelybeassumedtobe60milli-secondsinSI.By

definitionitisinfinityinSo.
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4.2.3. Finite Cost Functions

The finite cost does not vary greatly within the entire allowed state-space. It is

thereforesufficient to find a single cost function for So or S1.

The determination of the cost function is carriedout as a direct application of its

definition. That is, the processdifferentialequations are solvedwith varying values of _.

The value of _ cannot be greater than the inter-triggerinterval of 60 milli-secondssince,

by assumption, no job pipelining is allowedand the controllerterminates any execution

in progressupon receivinga trigger. The finite cost function is found by computation to

be approximatelythe same over the entire allowedstate-space as defined in Figure9.

In Figure 10, the finite cost function is plotted. The cost function is in the units of

the performanceindex. Bear in mind that these measures are the result of an idealized

model. We have, for example, ignored the effects of wind gusts and other random

effects of the environment. When these are taken into account, the demands on con-

trollerspeed get even greater, i.e. the costs increase.

The reader should compare the nature of the cost function with the plots showing

elevator deflection in Figure7, and notice the correlationbetween the marginal increase

in cost with increasedexecution delay and the marginal increase in control needed, also

as a function of the execution delay.

5. APPLICATIONS OF THE MEASURES

5.1. Introduction

In this Section, we consider two applications of the performance measures that have

been discussed thus far. We begin with the tradeoff between reliability and throughput

that is at the heart of distributed computing. We show how the use of our measures
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makes the resolution of this tradeoff sensitive to the application.

The second application that we present is to synchronization and fault-masking in

redundant real-time systems. First, we consider synchronization, both in hardware and

software. In doing so, we present a theorem that makes possible the design of an arbi-

trarily large phase-locked, fault-tolerant clock. We show that software synchronization

techniques are excessively time-consuming, and indeed impose a limit on the size of a

cluster that can be thus synchronized. Next, the fault-masking techniques of voting and

interactive consistency (Byzantine Generals) algorithms are considered, and their delay

overheads estimated. Next, we use these results to compare the reliabilities of reconfi-

gurable and non-reconfigurable systems, operating in real-time, under the constraints of

a hard deadline.

5.2. The Number-Power Tradeoff

The number-power tradeoff problem can be stated as follows [17]. It appears intui-

tively obvious if there are no device failures, that a system with a 8ingle processor with

exponentially distributed service time with mean 1]# is more efficient than an N-

processor (N>l) system with each processor providing exponential service at rate lt/N.

When failure is allowed for in the model, the above assertion is no longer obvious, and

may not even be true in specific instances. So, we ask the question, "Given that the

total processing power (number of processors X service rate per processor, called here

the number-power product ) is fixed at p, what is the optimal number, N, of processors,

that the system should start out with for a specific mission lifetime?" We extend an

adaptation of this problem to demonstrate the use of our performance measures to real-

time computers.
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Two observations are in order here. Firstly, we tacitly assume that processors with

arty prescribed power are available. This is not true, although a wide variety of proces-

sors i_ available. Secondly, such a tradeoff depends for its resolution upon the cost func-

tions and hard deadlines introduced above. It is this second point we pursue here.

Specifically, we set out to determine for an example control computer, the configurations

that meet specifications of reliability, and the sensitivity of reliability and the mean cost

to changes in the number-power product under different operating conditions of hard

deadline and mission lifetime. Implicit in all this will be the tradeoff between device

redundancy and device speed.

5.2.1. System Description and Analysis

We use the multiprocessor system in Figure 11 to demonstrate the idea. Assume

that there is a single job class that enters the system as a Poisson process with rate X,

and which requires an exponentially distributed amount of service with mean 1/It. Then

the system at any given time is an M[M[c queue (if the small dispatch time is ignored),

where c is the number of processors functioning at that time. The distribution function

for the response time for an M[M[c queue is well known [18]. It is given by:

{k - cp + pW_(O)}(1- e-t_t)+ p{1 - W,(O)}{1 - e-(ct_-x)t} (28)
FMM€ (t) = k - (c - 1)/t

where W,(0) is the probability that, when there are c processors functional, at least one

functional processor is free. This is given by:

c!(c-_,[IJ) L,_=o n! -_ + d [ ct_-)_ (29)

This distribution function is not defined unless cp > X.
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Assume that the hard deadline has a probability distribution function F#, and that

the finitc cost function for the task is denoted by g (as in Eq. (18)). Let the processors

fail according to an exponential law with rate #p. Also, let n be the smallest integer for

which np>k -- clearly, if there are fewer than n processors functioning, the utilization

exceeds unity, and failure takes place with certainty.

The system fails if a hard deadline is violated, or if there are fewer than n proces-

sors functioning, is When the system is in a state i> n, the rate at which failure can hap-

pen is equal to the product of the task input rate and the probability that the response

time of the system exceeds the hard deadline. If we assume that steady state is achieved

between each state transition (i.e. between processor failures), then the probability distri-

bution function of the response time at state i is always given by FMM i. Such an

assumption is valid, since the Mean Time Between Failures for components used in such

systems typically ranges from 1,000 to 10,000 hours. The probability of dynamic failure

can therefore be computed using the Markov model in Figure 12. Denoting the probabil-

ity of being in state i by rri, the quantity X[I - FMM_(t)]by a(j,t), the failure state by

fail, and the number of processors at start-up by N, the following balance equations can

be written

cO

dt) = -[gt,. + fo #F,(5) (30a)

co

_'.(t) = -[ ipp+ fo a(i,_) dra(_) ]rq(t) + (i+l)Itprq+l(t), rr.(0)=0, for .<_i<c (30b)

N co

r/o_t(t)----E{fo c_(i,D dF_(5)}%(t) + mtprr.(t), r%_t(0)----0. (30c)
i=n

is We do not consider here the failure of the interconnection net, or of the dispatcher. Taking account
of these is easy, but would obscure the analysis somewhat.
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Clearly, p#_ (t) = _rl_it(t) so that a solution of the above equations yields the probability

of dynamic failure. Implicit in these calculations is the assumption that the hard dead-

line is very much smaller than the mission lifetime or the sojourn time in the various

states, This is invariably the case in practice.

To compute the mean finite cost over the mission lifetime, we first have to evaluate

the distribution function of the response time, conditioned on the event that no hard

deadline is violated. This distribution function for a c-processor system, denoted by

_/init_ is given by:t" MM c,

.. ooFMMc(_) dFd(r) (31)
Fii;_( _) = fo FMMc(r)

where the function is only defined for arguments less than the associated hard deadline.

Then, the mean cost is defined by:

N oo oo _

M----E fo fo fo X lrc(t) g(r) "sr'/i"i''., MUo(T)dF,(OalL(t) (32)
&'-_ n

The above expressions are used in the following section to obtain values for the probabil-

ity of dynamic failure, and the mean cost as a function of the mission lifetime.

5.2.2.Numerical Results and Discussion

In what follows,itisassumed thatthejob arrivalrateisk----100,and thatthepro-

cessorfailure rate is pp_10 -4. All time units are in hours.

Figure 13 is the probability of dynamic failure when the task is non-critical, i.e. the

deadline is at infinity. In such cases, the probability of dynamic failure reduces to being

the probability of static .failure, namely the probability of failure of hardware com-

ponents to the point when the system utilization exceeds 100 %. This is because catas-

trophic failure does not occur in this case until the system utilization is greater than
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unity. This explains the monotonicnature of the plot.

Figure 14 shows the probability of dynamic failure when the task is critical with

the deadlines for the respectivecurves noted in the figure. The number-powerproduct

is 2200. The curves that result for the failureplot form an invertedbell.The portions of

the failure curve where the slope is positive can be explained as follows. When the

number of processorsincreases, the response time distribution is skewed to the right.

This in turn increasesthe probability of failing to meet the hard deadline to a greater

extent than the static failure probability is reducedby the addition of further redun-

dancy. The positive slope is the result of this tendency. When the hard deadline is

smaller, the premium on speed is increased,and as a result, the trough of the curves

moves to the left.

In the region correspondingto the fewest processors,there tends to be a tradeoff

between dynamic failure probability and the number of processors,leading to a negative

slope for the failure curves. When there are few processors,the fault-tolerance is less and

the probability of static failure is thereforegreater. Since the total processingpower of

the processorbank is fixed, the few processorseach have greater power, and the mean

waiting time is low. This accounts for the very small nature of the non-static com-

ponent of the failure probability. As the speeds of the individual processors are

decreased, but their numbers increased commensurately, the static failure probability

drops, but the probability of missing the hard deadline increases. In the area of the

curve where the slope of the probability of failure is negative, the benefits accrued from

adding redundancy outweigh the negative impact of the loweredindividual speeds that

result;elsewherethe reverse is the case. Notice that the curve correspondingto a dead-

line of 0.01 has no region of negative slope. This means that 2200 is a number-power
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product that is too small with respect to that hard deadline.

In Figure 15, the dependence of the probability of dynamic failure on the number-

power product for a mission lifetime of 10 hours is considered. Each point on the curves

represents the configuration yielding the lowest possible failure probability for the

number-power product represented. The label of each point on this plot is the number of

processors in the configuration for which this lowest failure probability is achieved. As

the product increases, the optimal configuration tends to contain more processors: this

also is due to the lowering of the non-static component of the dynamic failure probabil-

ity when the product is increased.

Naturally, the curves are monotonically non-increasing. They serve to show the

marginal gain in maximum achievable reliability that is to be had on increasing the

number-power product at each point for the class of systems under consideration.

Notice the "elbows" in the plot. These occur when the minimum failure probability con-

figuration changes, and are the result of a tradeoff between the static and non-static

components of the failure probability. The Payn drops exponentially with an increase in

the product as long as the static component is a small fraction of Pdyn. When the non-

static component drops to sufficiently below the static component value, the optimal

configuration changes, and the static component once again becomes negligible compared

to the non-static component. This race continues indefinitely and is portrayed in Figure

16. The discrete nature of the processors causes the elbows: if the number of processors

were a continuous quantity, they would not appear.

The probability of dynamic failure is used as a pass-fail test for control computers.

Plots such as Figure 15 can be used in this connection. As an example, let the mission

lifetime be 10 hours, and the specified probability of dynamic failure equal to 10-7 over
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that period. Let the system parameters be those of the model in this section. Then,

corresponding to each of the four deadlines considered, we can obtain graphically from

Figure 15, the minimum number-power product that is required to satisfy the Pd_ specif-

ications. These products are listed in Table 5. Any system that has a smaller number-

power product must be rejected, no matter what its other credentials may be.

When this stage of the evaluation is complete, one has a set of acceptable confi-

gurations. Only after this point does the mean cost come into consideration. The mean

costs associated with each of the points in Figure 15 is graphed in Figure 17, where the

finite cost function, g, has been taken as equal to the response time for demonstrative

purpose. The curves take the form of a sawtooth wave, with each upward transition

occurring when the optimal configuration increases by one. Clearly, the greater the

power of each processor, the smaller is the mean cost.

In Figure 18 (A, B, and C), we show the effects on Po'y,of changing mission lifetime

for various values of the hard deadline, Q. In the light of the preceding discussion, these

plots should be largely self-explanatory. It is worth pointing out, however, that as the

lifetime increases, the optimal configuration contains a larger number of processors. The

trough (around the optimal point) becomes shallower as one increases the mission life-

time, until finally, it disappears to be replaced by a shallow trough one unit to the right.

As the lifetime increases still further, the new trough deepens, then begins to become

shallow. Whether or not the cycle continues depends upon the hard deadline: it will con-

tinue so long as the number-power product is sufficiently large to cope with the hard

deadline at the lifetimes used; the plot will rise monotonically to a failure probability of

one if this is not the case (cf. Figure 14).
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Hard Deadline Number-Power Product

0.010 7165

0.025 2126

0.050 1496

0.075 1180

Required Pa_ _10-_
Mission Lifetime -- 10 hours

Table 5. Minimum Number-Power Product for Various Hard Deadlines.
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In Figure 19 (A, B, and C), we show the associated Mean Costs per unit time of

operation using the same cost function as was used in Figure 17. In all three curves, we

may note the anomaly mentioned in Section 2: as the lifetime increases, and as the

number of processors increases, there is a region over which the mean costs per hour

•actually drop. It is most pronounced in Figure 19A, where the probability of dynamic

failure is close to unity under almost all configurations. This anomaly, of course, is due

to the fact that the mean costs are computed on u response-time distribution that is con-

ditioned on the system's not failing. Thus, on comparing Figures 19A, 19B, and 19C,

we see that the system operating in the longest hard deadline, and therefore having

greater reliability exhibits a higher mean cost per hour in some configurations than its

identical counterparts that operate under more difficult conditions. If this causes undue

irritation, the anomaly can be made to vanish by redefining the finite cost function for a

task i to be:

if t <
f,(t)=tig,(td) if t :> t d

(33)

introducing the following functions:

qP)

a,( t) ---- E g,(Z( Viy,riy,niy,t)) (34)

r

r,(t) (35)
i=I

and defining the mean and variance costs to be:

oo

Mean Approximate Cost (MAC) _ f E{_t)}dL(t) (36)
o

Oo

Variance Approximate Cost ( VA C) _ f Yar{/3(t)} dL{t) (37)
o
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It is easy to see that MAC>Mean Cost always, and that the approximate costs

approach the accurate costs when the probability of dynamic failure is small. Indeed, the

anomaly does not appear until the probability of dynamic failure is significant. Since the

applications under consideration are all critical processes, P#un is always small for the

"accepted configurations, and the configurations that exhibit this anomaly will be rejected

by the p@, pass-fail test, and their mean costs need never be computed.

5.2.3. Extension

The number-power tradeoff can easily be extended to make it very useful in the

process of design. The reader will have noticed that in the cost functions with which we

measure the goodness of controller performance, no account is taken of controller

hardware cost. All that the cost functions express is the control overhead incurred in

actually running the process. Indeed, we may regard the mean costs as average operating

overheads. It is not easy directly to incorporate the hardware cost into the cost functions

themselves. Instead, one may consider the set of hardware configurations available for a

particular hardware cost outlay. Then, constant-cost plots can be drawn, showing the

range of performance (in terms of probability of dynamic failure and average operating

costs) that is available for any particular hardware cost outlay. From similar curves, one

may arrive at the minimum finite average operating cost associated with a particular

hardware cost given that specifications for the probability of dynamic failure are met.

This approach can easily be illustrated with the number-power tradeoff considered

here. When the hardware cost of a processor is proportional to its processing speed, the

curves in Figure 13 become dynamic failure curves for a particular hardware cost.

Curves such as Figure 18 can be used to identify the configurations that meet require-

78



ments for the probability of dynamic failure for given mission lifetimes, and the sensi-

tivity of p#_ to changes in mission lifetime.

Also, one can study any other tradeoffs that may exist between the hardware cost

or the number-power product and the minimum mean cost per lifetime associated with

such a cost or product.

The computer studied here is simple; however, it can be extended in some useful

directions relatively easily. It is easy to take care of the case when the hardware cost or

the finite cost function is a more complicated function of the processing speed. More

complicated multiprocessors require a more involved analysis, but the basic ideas should

now be clear.

5.3. Synchronization

Figure 20 is a schematic showing the handling of data as it enters the system

through the sensors, and leaves it (in a figurative sense) at the actuators. Synchroniza-

tion and fault-masking are integral parts of any fault-tolerant distributed system.

When a multiplicity of processors executes code in parallel, care must be taken to

keep thcm reasonably in step. Therefore, the issue of synchronization is focal to all

methods of forward error recovery. There are two basic methods of synchronization:

(1). Each processor has an ultra-precise clock. When the computer is switched on, the

clocks are synchronized. If the clocks are sufficiently precise, the processors will

continue to run in lock-step for an appreciable period. Unfortunately, such highly

precise clocks are extremely expensive to build, and unsuited to incorporation in

computer circuits. (For a description of highly precise clocks, see [19]). Clocks

Ricky W. Butler at NASA Langley Research Center has made a major technical contribution to this
Section.
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that are generally used in computer circuits drift too rapidly for this method to

be employed in practice. We shall not consider this method any further.

(2). The synchronization is carried out mutually. There is no single component whose

functioning is critical to the security of the whole system. One may choose to syn-

chronize the processor clocks, or the processors themselves at pre-defined boun-

daries of software execution. In the first case, one has a system operating more or

less in lock-step, such as the FTMP system [2]. Both methods of synchronization

are based on the same basic concepts; the only difference is the frequency with

which synchronization is carried out. 16 The notion of virtual time 8ources now

arises naturally. These are not necessarily clocks in the traditional sense; they

mark the points at which an individual processor performs synchronization. It is

convenient to view them as virtual clocks, whose transitions represent either clock

"ticks" or execution of a stretch of code up to a pre-specified boundary. In the

sequel, unless it is otherwise stated, the term "clock" is used to mean "virtual

clock".

When synchronization is mutual, no "absolute" underlying time-source exists, only

a set of time-sources whose relative behavior must he kept in step. The synchronizer

(which may or may not be a physical part of the processor and which may be imple-

mented either in hardware or in software) must therefore in each case have a perception

of the state of the other time-sources. This perception may or may not be identical to

that of the other synchronizers: if faulty modules necessarily behave consistently with

respect to all synchronizers, it is identical; otherwise it need not be so.

16An important corollary of this is that the maximum clock drift rates that can be tolerated decrease
with a decrease in the frequency of synchronization.
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The synchronization process contributes to the system overhead in two ways.

Firstly, there is the overhead imposed by the synchronization task itself. Secondly, the

task-to-task communication overhead is proportional to the degree of synchronization

achieved.

If hardware synchronization with phase-locked clocks is employed, the synchroniza-

tion overhead can be reduced to vanishing point. If software synchronization is used,

the overhead is significant. Both approaches to synchronization will be considered in

• succeeding sections. First, however, we will consider the second component.

Because of severe timing constraints, real-time systems do not generally use sophis-

ticated mechanisms for task-to-task communication. Typically, data are transmitted

from one task to another via timing rules agreed in advance. As a result, the receiving

task has to wait for a time equal to the sum of the maximum transmission time and the

maximum possible clock skew before it can read the data. Where synchronization is car-

ried out in software and depends on the transmission of timing data on regular data

channels, this transmission delay feeds back to increase the synchronization delay itself.

We will consider this matter in detail in the sequel.

Synchronization can be implemented in either hardware or software. In what fol-

lows, we present a detailed discussion on each of these two implementations.

5.3.1. Hardware Synchronization

In this section, we consider synchronization by phase locking. Phase-locked clocks

were first used to ensure that the processors of FTMP [1] operated in lock step. We con-

sider a total of N clocks to be synchronized in the face of up to m faulty clocks. The

clocks are at the nodes of a completely connected graph. The basic theory behind their
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operation is simple. In Figure 21, we provide a schematic diagram of an individual

clock. Each clock consists of a receiver which monitom the clock pulses of the N-1 other

clocks in the arrangement, and these are used to generate a reference signal. By compar-

ing this reference with its own pulse, the receiving clock computes an estimate of its own

phase error. This estimated phase error is then put into an appropriate filter, and the

output of the filter controls the clock oscillator's frequency. By thus controlling the fre-

quency of the individual clocks, they can be kept in phase-lock and therefore synchron-

ized for as long as the initial phase error is below a prescribed bound, i.e. for as long as

the clocks started reasonably in step and their drifts are sufficiently low. A discussion of

clock stability is provided in [21].

The arrangement for N=4, m-----1is, to our knowledge, the only phase-locked clock

constructed and fully analyzed [20]. Unfortunately, when one attempts to increase m

without care, synchronization can be lost due to the'presence of malicious faults. In this

section, we show how to design phase-locked clocks to tolerate a given arbitrary number

of malicious failures. Our work is a generalization of the original design [20] which can

tolerate at most one failed clock.

5.3.1.1. Notation and Definitions

The following notation and definitions are used in this section.

Definition 1: If the overall system of clocks is properly synchronized, all individual

non-faulty clocks must agree closely with each other. A well-synchronized system thus

has global clock cycles. Global clock cycle i is the interval between the i-th tick of the

fastest non-faulty clock (i.e. the non-faulty clock that has its i--th tick before that of all

the other non-faulty clocks) and the (i'+l)-th tick of the fastest non-faulty clock. For

brevity, we shall denote global clock cycle i by gcci.
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Definition 2: Each of the clocks "sees" through its receiving circuitry, the ticks of the

other clocks. These ticks, together with the receiving clock's own tick, can be totally

ordered in any gcciby the relation "prior or equal to". Such an ordered set, called a

_cenario, for clock a in gcci is denoted by Sia. We shall frequently drop the superscript

for convenience: where this is done, it will be understood that we are talkingabout some

gcci.

If a non-faulty clock c does not receive a tick from clock d within a given timeout

period in any global clock cycle, the tick for d is arbitrarily assumed by c to be at the

end of that timeout period. The scenario of every non-faulty clock therefore has exactly

N elements.

Definition 3: If clock a has clock b as its reference in some gcci, it is said to trigger on b

in that gcci.

Definition 4: Given the various triggers, we can draw a directed graph with the clocks

as the vertices, and the directed arcs reflecting the relationship "triggers" in some gcci.

Such a graph is called the trigger graph. For example, in Figure 22, a triggers b and c,

and is itself triggered by d, while d is triggered by b. A clique of clocks is a component

of the trigger graph. In Figure 22, there are two cliques: {a,b,c,d} and {e,.f,g}.

Notation: G and NG are the set of clocks and non-faulty clocks, respectively, in the

system. There are Nclocks in all, and up to m failures must be sustained.

Definition 8: A partition of G is defined as a set P----{G1,G2}, where G1 and G2 are sub-

sets of G with the following properties:
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(i) G = (7, U G2

(ii) Gt f-IG2 f"ING = d?,

(iii) GinNG # €, i=1,2.

From (i), each clock must belong to at least one of G1 and G2. From (ii), only

faulty clocks may belong to both G1 and G2. From (iii), there must be at least one non-

faulty clock in each of GI and (:72.

Definition 7: A clock a is said to be faster than a clock b in scenario S if a precedes b in

S. In a partition P--{GI,G2}, Gl is said to be faster than Gz if every non-faulty clock in

GI is faster than every non-faulty clock in G2.

Notation: Given a partition P_-{Gt, G2}, NGl and NG2 are the non-faulty clocks in G1

and G2, respectively. By definition 6, neither NG 1 nor NG 2 can be empty and

NC1NNC2= €.

Definition 8: Cliques A and B (of clocks) are said to be non-overlapping if the non-

faulty clocks of A are either all faster than those of B, or vice versa.

Notation: Denote the position of a clock c in its own scenario S'€ in gcci by p_. Again,

we shall frequently drop the superscript for convenience. The reference signal (i.e. the

trigger) is a function of N and of p,. It is denoted by/'p,(N). By this, we mean that

clock c triggers on the fp,(N)-th signal in So, not counting itself.

For the system to operate satisfactorily, all the non-faulty clocks must have their

ticks close together. Also, they should tell good time, i.e. the length of every global

clock cycle should be about the length of an ideal (or absolute time) clock's inter-tick
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interval. These conditions dictate the following two conditions of correctness C1 and

G2.

Definition 9: Each of the following conditions of correctness must be satisfied in gcci if

the system is to be correctly operating in everygcci.

G1. For all partitions P--{GI,G2} of the set of clocks G, in which the non-faulty clocks

in G1 are all faster than those in G2,each of the following (K1 and K2) must apply:

K1. If, in gcci, all clocks in NGl trigger on clocks in G1, then there is at least one

clock in NG 2 that triggers on a clock in G1. Furthermore, if no clock in NG2

triggers on a clock in NG1, at least one clock kENG 2 must trigger on a faulty

clock bEG l such that in the scenario S_, there is at least one clock rENG 1

that is slower than the clock h.

K2. If, in gcci, all clocks in NG 2 trigger on clocks in G2, then there is at least one

clock in NG 1 that triggers on a clock in G2. Furthermore, if no clock in NG 1

triggers on a clock in NG2, at least one clock kENG 1 must trigger on a faulty

clock bEG2 such that in Sk, there is at least one clock rENG 2 that is faster

than h.

C2. If a non-faulty clock z triggers on a faulty clock y, then there must exist non-faulty

clocks z1 and z2 such that z1 is faster than or equal to y, and y is faster than or

equal to z2. Either zI or z2 may be z itself.

Intuitively, we may regard C1 as preventing the formation of non-overlapping

cliques -- which would obviously destroy synchrony -- and C2 as ensuring that the sys-

tem keeps good time, i.e. that each global clock cycle is close to being the clock cycle of

an ideal clock.
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Finally, we assume that the transmission of clock signals through the system takes

negligible time. This ensures that all non-faulty clocks are seen by all clocks in the same

mutual order.

5.3.1.2. Malicious Failure and Synchronization

The phase-locked clock system for N----4, m----1 is simple enough to be proved

correct by an exhaustive enumeration of all eventualities. It is, to our knowledge, the

only phase-locked clock actually constructed [20].

Here, the reference used is the second incoming pulse (in temporal order), i.e. the

median pulse. Such a clock is proof against the malice of a single faulty clock. To give

the reader a feeling for why this is so, and to enhance his intuition about malicious

failure, we provide below a simple explanation.

Call the four clocks a, b, c, and d. Let d be the maliciously faulty clock. Because d

is malicious, it may provide different timing signals (i.e. lie) to different receivers. Since

the non-faulty clocks by definition send their ticks at the same moment (or do not lie) to

all the other receiving clocks, the mutual ordering of the non-faulty clocks within every

scenario is the same for all non-faulty clocks. That is to say, if clock b sees clock a fas-

ter than clock c in some gcci (i.e. clock a sends its i-th tick to b before clock c does so),

then a will appear faster than c to both the other non-faulty clocks in the system, i.e. to

a and c in that gcci. d, however, may appear in different positions in the scenarios of

the non-faulty clocks since it is malicious. One way of proving that a four-clock

arrangement works despite d's being malicious, is to enumerate all possible actions of d

and show that the system still continues to satisfy the conditions of correctness.
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Assumewithout loss of generality that a is prioror equal to b which in turn is prior

or equal to c in some gcei. Consider a sample set of scenarios for our four-clock exam-

ple. The triggering clock is denoted in bold-facetype.

S,, _ a<b<e<d

Sb = a<d<b<c

Sc = a<b<d<c

The scenario Sj is irrelevant, since d is faulty.

Notice first that the position of the faulty clock d changes relative to the others,

while the mutual ordering of the non-faulty clocks remains unchanged, as indeed it

should.

It is easy to see that both conditions of correctness will be satisfied, and that the

clock will operate correctly if the above scenario holds. It is not difficult to write down

all the 43=64 possible scenarios (with the ordering of the non-faulty clocks fixed as

above) that are made possible by the arbitrary positioning of d, and to convince oneself

that, for all possible scenarios, C1 and C2 are satisfied.

Unfortunately, if we try to allow for m----2,3,..., by expanding the system arbitrarily

without sufficient care, the conditions of correctness can be violated. In fact, it is even

possible for a system to contain an arbitrarily large number of clocks, and still to be

vulnerable to just two malicious failures.

To see this, consider the following example. Let us choose, for each clock y in the

system, fpy(N) as the median clock signal in the scenario, not counting clock y. If N is

odd (and there is thus an even number of "other" clocks), choose the slower of the two

middle clocks. Then, fp,(N) is only a function of N. We therefore drop the subscript for
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this example. Choosing the median signal is certainly good intuition.

Let there he only two faulty clocks, zI and z2, and n=N-2 non-faulty clocks al, ...,

nil.

Case I: N>7. Consider some gcci. Assume that ak is faster than at in gcci if k<l. Now,

let zI and x2 present themselves as the fastest two clocks to al, ..., %,and as the slowest

two clocks to the other non-faulty clocks, i.e. %+1,...a,, where p-=[n/2"l =/IN)-1. Then,

the set of scenarios can be represented as in Figure 23.

Recalling that a clock triggem on the .[(N)-th tick in its scenario not counting itself,

we can draw the trigger graph as in Figure 24. It follows that {al,... , %} and {%+1, ...,

%} will be two non-overlapping cliques, no matter how large n may be. It is easy to

work out the case for N--7 to convince oneself of this fact.

Case 2: N<7. This is trivial, and showing that the system is incapable of sustaining

even two maliciously faulty clocks is left to the reader.

This has been a cautionary tale of the unbridled use of intuition in designing

phase-locked clocks. Assured now that a more careful approach is needed, we turn in

the following section to showing how to expand phase-locked clocks.

5.3.1.3. Main Result

Our job is to (i) find the lower bound, N, on the size of a system of clocks that

must sustain up to rn maliciously faulty clocks, and (ii) find the functions fz(N) for

z-_I,...,N.
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Figure 23. Scenarios for Example
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We beginwith the followingtwo iemmas.

Lemma 1: Condition C2 is satisfied for all partitions P-_{G1,G2}if and only if there

exist functions fz(AD for z=I,...,N, such that

min{m, z-l} < fz(AD < max{N-m, z} (38)

Proof: Let k be a non-faulty clock such that Pk----z. We must show that Eq. (38) holds

for all z for which Pkis defined iff condition C2 holds.

Suppose that there exist functions f_(N) for _I,...,N satisfying Eq. (38). This

implies min{m, z-1}+l < max{N-m, z} for all zE{1,2,...,N}, leading to N>2m+l.

Hence, it is sufficient to consider the followingthree eases:

(i)

Clearly, max{N-m, z} _--N-m, min{m, z-I} = z-1 and therefore

z-1 < fx(N) < N-re. If the referenceclock is non-faulty, we have noth-

ing to prove. If it is faulty, then since there are at most m faulty clocks,

there must he at least one non-faulty clock slower than the reference

clock. Also, from the left half of the inequality, fx>z-1, and since clock

k is non-faulty, there is a non-faulty clock (i.e. k itself) faster than the

referenceclock. So, C2 is satisfied.

(ii) N-m>z>m :

min{ m,x-1}=m, max{N-m,z}_-N-m and therefore

m+l < f,(N) < N-m-1. Since at most m faulty clocks exist, if the

referenceclock in Sk were faulty, it must appear in Sk as slowerthan at

least one non-faulty clock (the right half of the inequality), and faster

than at least one non-faulty clock (the left half of the inequality), and
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C2 is satisfied.

(iii) N>_ z> N-m :

rain{re,x-I}----m,max{N-m,z}_-z and m+l __ fz(N)_ z-1. As with

the previous cases, there must appear in Sk at least one non-faulty clock

that is faster than the reference clock, if the reference clock is faulty.

Also, since k is non-faulty, and appears in the x-th (i.e. pk-th) position,

there is at least one non-faulty clock, in particular clock k, that is

slower than the reference clock in Sk, thus satisfying C2.

Conversely, suppose f_(LO__min{m,z-1}. Then, C2 is violated when faulty clocks

appear in positions 1,...,f_(N) of Sk. Similarly, if f,(N)__max{N-m,z}, C2 is violated

when faulty clocks appear in positions fz(N)+l,...,Nof S t. Q_E.D.

Lemma 2: If all clocks in NG l trigger only on clocks in Gl (where the notation is the

same as in definition 9), then the following are equivalent:

(i) ql > min fpk(N) where ql is the number of non-faulty clocks in GI.
kCNG 2

(ii) K1 is satisfied.

Proof:

(i) implies (ii): If (i) holds, then it is easy to see that no matter how the up to m

faulty clocks in G arrange themselves, K1 is satisfied.

(ii) implie_ (i): Suppose, to the contrary, that ql < min fpk(N). Consider the
kENG 2

nonempty set L = {y: !lENG2 and fp,(N) = kmin/,,( N) }. Assume that there are i_m

faulty clocks in G1. Since the faulty clocks may present themselves in any position in

any scenario, consider the ease where they present themselves in the scenario of every
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!/EL in the ql+l,...,ql+i positions. Then, there is no non-faulty clock in Gl that is

slower than the reference clock of any clock in NG2, a contradiction. Q_E.D.

The two theoremsbelowyieldthe mainresultof thissection.

Theorem 1: To ensure that, despite up to m malicious failures, the conditions of

correctnessare satisfied,the systemmusthaveN_3m+l clocks.

Proof: We will only consider here the case of partitions P = {GI,G2} in which all clocks

in NG1triggeron clocks in G1. The other case (i.e. K2)can similarlybe dealt with.

Let there be qx and q2 clocks respectively in NGx and NG2. Let

M={U: yENGt and f.(N)=max fp,(N)}. Let i be the number of faulty clocks that
ry tENG 1

belong to G1. Then, the assumption that all non-faulty clocks in Gxtrigger on clocks in

G_ is equivalent to saying that one of the following Eqs. (39) and (40) must apply:

ql+i > maxf,,(N)+ 1 _---fp,(N)+ 1 (39)
kCNG x _k

which applies if there exists at least one Pv, _M, such that py < fp,(N). The addition of

1 follows from the fact that clock y does not count itself when counting to ]p,(N). If

Pu_ fry(N) for all _M, the following Eq. (40) applies:

q,+i > max fv(N) (40)
kENG 1 k

First consider the case where Eq. (39) applies. The condition that C1 (more specifically,

K1) holds implies, from Lemma 2, that

q, > min fp,(N) (41)kENG2

Since this must be true for all partitions of G, we have for all qlE{1,...,N-i-1}:
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i:_ NGt

if ql :> rain fp_(N).Hence,K1can bewrittenas:
m kENG 2

For all qlE{1,""-,N-i-l}, {ql_max-tENa_fp,(N)-i+l D ql_kI_iN_2fp_(N)}

In particular, this is true for q,----tm_x_,(N) -i+1. Thus,

max fpL(N)-i+1 > rain L,(P0
kENGx • -- kENG 2

or

max fp,(N) - rain fpk(N) > i-1
kE NG 1 IcENG2 -- (42)

Recall that this is true if Eq. (39) applies. Similarly, if Eq. (40) applies, we have

from an identical argument,

max fp_(N)- _in2fp,(N ) > i (43)kENG 1

Eqs. (39)-(43) must hold for all possible i. Since there are at most m faulty clocks,

we must have:

max L,(P0 - rain L,(h0 > m-1
tENa: _Na2 -- (42')

if Eq. (39) applies, and

max fpk(N) - min fpk(N) > m
kENG, _Na, -- (43')

if Eq. (40) applies.

We first consider the case where Eq. (39) applies. We claim that it implies that

N>3m.
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To see why, let y be the slowest clock in M and z the slowest clock in L (with L

defined as in Lemma 2). Then, due to Lemma 1 and Eq. (42') the following inequality

must hold:

max{N-m, pu} > max fp,(N) > m-l+ min g,(A D > m-1 + rain{m, Pz-1} (44)
kC NG 1 -- kE NG 2

Then up to m faulty clocks in the system can arrange themselves in any order. In par-

ticular, they can so order themselves in Sy that py<_N-m, and so order themselves in Sz

that pz> m. Since Eq. (44) must hold always, no matter what the faulty clocks do, we

must have:

N-m > max h_(N) :> m-l+ min fr,(N) > (m-l) -t- (re+l) (45)
kC NG 1 _ kC NG 2

from which we arrive at the equation

N>3m (46)

Recall that this applies whenever Eq. (39) holds. If, instead, Eq. (40) applies, we

can similarly show that

N>3m+l (47)

Since we seek the smallest N to satisfy the conditions of correctness, we have done if we

can show that there exist functions fz(N) such that Eq. (39) always applies (and therefore

Eq. (40) never applies), and for which Eq. (45) is satisfied. But, we can always construct

f_(N) to (i) be monotonically non-increasing functions of x and (ii) satisfy Eq. (45): an

example of such a construction is provided in the statement of Theorem 2 below. Hence

Eq. (39) always applies, and N>3m+l, is the necessary condition.

The case when all clocks in NG2 trigger on clocks in G2 can be similarly treated.

Q.E.D.
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Theorem 2: If N>3m+l and f_(N)=/2m[

if z<g-m

-- m+l if z>N-m then the conditions of correct-

ness are satisfied.

Proof: f_(N) as defined here satisfies Lemmas 1 and 2 and is monotonically non-

increasing in z. Clearly, C2 holds. Also, it is easy to see that if N>3m and Eq. (39)

implies Eq. (41), then case K1 in Definition 8 will hold. We therefore only have to show

that the definition of f_(N) as given above satisfies Eq. (41) if Eq. (39) is satisfied. This

can easily be verified by a direct substitution.

Case K2 can be similarly seen to hold. Q.E.D.

It should be noted that the set of functions f_(N) is not always unique. From the

proofs of Theorems 1 and 2, the following inequalities are sufficient:

(i) m+l _<£(N) _<N-m-1 for all z-----1,...,g.

(ii) f_(N) _> m-l+f_m(N) for all x_<m+l,

(iii) fN_m(N) < fz(N) 5 fm+x(Y) for N-m>z>m+l,

(iv) f,(N) > fj(N)iff i<j.

The intervals ._>N-m and z<m.l arise from the up to m faulty clocks in the sys-

tem. All that we can tell about the fastest non-faulty clock g in the system (this clock

must have the maximum value of fz(N)) in clock g's scenario is that it is in the first m+l

clocks in that scenario. Similarly,all that we can tell about the position of the slowest

non-faulty clock s in the system (which must have the minimum value of f_(N)) is that it

occupies a place in the last m+l clocks. This leads at once to the intervals z>N-m and

z_m+l.
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It is interesting to note that if conditions C1 and C2 are both satisfied, and the

functionsfz(N) are monotonicallynon-increasingin z, then a strongerconditionthan C2

automaticallyholds.

Corollary: If the conditions of correctness are satisfiedi with the f_(N) being defined as

monotonically non-increasing functions of z, then the followingcondition C3 holds.

C3. Every non-faulty clock necessarilytriggers on either a non-faulty clock, or a faulty

clockthat is sandwichedbetweenthe othernon-faultyclocks.

Proof: Now, C3 follows immediately from C2 for all but the fastest and slowest non-

faulty clocks.

Consider the fastest non-faulty clock. In the course of proving Theorem 1, it was

established that N-m _> fz(N) > m for all z=l,...,N, and that

max fp,(AD - rain fpk(N) _> m-l, leading to 2m as the smallest value for max fp,(N) where
kC G kC G -- kCNG

NGC G is the set of non-faulty clocks. From the monotonic nature of the fvk(AD, the

trigger for the fastest non-faulty clock must lie in the interval 2m+1, ..., N-re. But, since

N_>3m+l, any faulty clock in this interval must be sandwiched between non-faulty

clocks.

The proof for the slowest non-faulty clock is similar. Q.E.D.

Remark 1: Synchronization Overhead

In the case of a phase-locked clock, there is some time overhead due to the oscilla-

tions that are possible as a result of malicious behavior. However, these are minimal

when good crystal clocks are used, and so it is reasonable to treat the overhead of

hardware synchronization as negligible. Also, the clock skew is very small/negligible in a
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well-designed phase-locked clock.

Remark 2: An Alternative Design

The only other hardware arrangement that we are aware of for keeping synchroni-

zation in the face of malicious behavior is the multi-stage synchronizer arrangement pro-

posed by Davies and Wakerly [22]. The idea is shown in Figure 25. It consists of m

stages of N synchronizers each. The system works on the principle that, with this redun-

dancy, there must be at least one level of synchronizers that assures proper synchroniza-

tion in the presence of malicious faults. An informal proof is provided in [22].

This arrangement results in a proliferation of hardware. As may readily be verified, the

total number of devices (processors and synchronizers) in the cluster is 2m2+3rn+l. The

total number of I/O ports required is given by 8mZ+16m2+lOm+2. The potential enor-

mity of the above numbers should be driven home by the consideration that in order to

maximize returns from redundancy, the individual modules must be isolated from one

another as much as possible. This dictates that power supplies must also be replicated

in large numbers, and that the benefits of large-scale integration cannot be brought to

bear on the issue: individual synchronizers must be on separ_e devices -- even, perhaps,

on separate cards. Otherwise, correlated and common-cause failures could wipe out relia-

bility gains made by device redundancy.

Compared with the gargantuan nature of the redundancy required by the Davies

and Wakerly approach, the N--3m+l requirement of phase-locked clocks represents an

extremely elegant hardware solution to the problem of synchronization in the presence of

malicious faults.
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5.3.2. Software Synchronization

The use of decentralized algorithms for synchronization offers an alternative to the

hardware methods described above. Such algorithms enable a system consisting of many

processors with their own clocks to operate in close synchrony. The degree of synchroni-

zation obtained by these algorithms depends primarily on the performance of the com-

munications system, the precision of the clocks, and the frequency of resynchronizatlon.

The task-to-task communications system's one-way message time is at least B._ where

B is the maximum transmission time and _ is the maximum clock skew. The most

time-efficient of the software algorithms that we know of is the interactive convergence

algorithm [23].

In the interactive convergence algorithm, each processor in the system determines

its skew relative to every other processor in the system. If any relative skew is greater

than a predetermined threshold, it is set to zero. An average of all the relative skews is

calculated and used to correct its clock.

The following theorem (a trivial adaptation of one proved in [23]) characterizes the

maximum clock skew of the system in terms of the following system parameters.

- maximum error in reading another processor's clock

9 - maximum drift rate between any two clocks in the system

N number of clocks in the system.

m - maximum number of faulty clocks accommodated.

R- resynchronization period.

5(N) - execution time of the resynchronization task.
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60 - maximum clock skew at start-up.

Theorem 3 (adapted from [23]): If the following conditions hold:

3m<N

11-3m-2o(1-N)]-lt2c{l+p(1-m)} + o{R + 2 g-m S(N)}]
6 >

-' N /v N

6 _>60 + pR

ma×(6,S{0)< R

p6<<_,

then, the non-faulty clocks remain in synchrony, i.e. the maximum skew is 6.

The synchronization algorithm is run periodically, the major component of the exe-

cution time usually being the time required to read every other processor's clock in the

system. In the SIFT system, each processor's clock value is broadcast during a window

of time allocated to it. There are N such windows, one for each processor in the system.

All other processors wait during this window to receive the broadcast data value.

In order to accommodate the worst-case situation, each window must be at least

B+6 long. The interactive convergence algorithm takes an execution time equal to

S(N)--=N(B+6)+K, where K is the time needed to compute and carry out the clock

correction.

It should be noted that this execution time of the synchronization task affects the

synchronization process itself. Indeed, since this is a function of N, there is a maximum

cluster size that can be synchronized in this way. To see this, substitute the above

expression for S(N) in the formula for 6, and obtain:

6 >_ N[g-3m-2p(N"+Y-mY-m)] -1 [2_+p{R+2(Y-m)(B+K)}] (48)/v
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From this, one can (a) compute the minimum execution time of the synchronization task

as a function of the cluster size, (b) obtain the quality of synchronization (the smaller

the 6, the better the synchronization), and (e) determine the largest possible cluster that

can be thus synchronized: this is the largest N for which S(N) < R.

The values for the SIFT system are given by B--18.2 micro-seconds, and execution

time for the synchronization task is 1.760 milli-seconds. Numerical results on the syn-

chronization overhead using these values are plotted in Figure 26. The maximum cluster

size permissible for synchronization is tabulated in Table 6.

Although the expression S(N) = I_6+B)+K was presented as emanating from the

SIFT system, it is easy to see that in any system where communication is by broadcast,

and clock transmission slots are pre-determined, this expression will hold. It should also

be reiterated that such communication protocols are the most commonly used protocols

in real-time systems. In any case, it is obvious that whatever the protocol used, S(N) is

very unlikely to be less than a first order function of AT.

Even if, in a hypothetical ease, S(N) were negligible (which, of course can never

happen but nevertheless represents an extreme case), 6 will continue to be a function of

N, and there will be a point for which 6>R, at which synchrony will break down.

5.4. Voting and Byzantine Generals Algorithm

5.4.1. Voting

Once the delay involved in synchronization is taken account of, there is very little

additional delay if the voting is carried out in hardware. With software voting, however,

the additional overhead can be significant.
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Drift Rate Maximum Cluster Size

1 X 10-6 43

5 X 10-6 40

1 X 10-5 40

2.2 × 10-5 ** 40

5 X 10-5 37

1 X 10-4 34

5 X 10-4 22

1 X 10 -3 16

** SIFT Value

Table 6. Maximum Cluster Size Permissible for Software Synchronization
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Voting in software is carried out by individual processorsplacing data to be voted

on in pre-specified"mailboxes"or "pigeonholes".The voter searchesthe mailboxesfor

valid data, fetchesthem, and then votes on them. The executiontime in the retrieval

step is directlyproportionalto the numberof processorsin the cluster,N. The execution

time requiredto vote Nvalues and diagnoseup to m faults is at least (N-1)C1+ 6'2but

[(N-l) + 2m- 2] C_ + C2 = 15(_N3-1)-2] C, + C2 where C,. C2 are some con-
less than

stants [24].

Experimental data exist for 3-MR and 5-MR in SIFT. These data can easily be

introduced into the linear model obtained above. If , is the number of data values

voted, and VN(, ) the time taken for an N-way vote on , data values, the following

expression was found to hold for SIFT:

Vt_, ) = 58.5 , N + 91.5,-I-38 micro-,econd,. (49)

This is a large overhead: in SIFT, for example, voting is performed at the beginning of a

3.2 milli-second subframe. If s=6, N=5, then 73% of the subframe is consumed by the

voting algorithm [25].

5.4.2. Byzantine Generala Algorithms

The Byzantine Generals, or interactive consistency, algorithm must be used when it

is necessary to isolate the sources of errors as well as to mask the errors themselves. It

finds use when reconfiguration upon failure is to be attempted and the executive is dis-

tributed. The algorithm takes into account the fact that faulty processors may be mali-

cious, in other words, that they need not fail only in "safe" directions. To be absolutely

certain that faulty processors can be properly identified for isolation, it is necessary to

allow for every possible misbehavior: thus the case when a faulty processor is malicious,
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i.e. that it actively and intelligently attempts to hide its malfunction, must also be han-

dled. Such algorithms are typically used to reach agreement between processors in a clus-

ter on incoming sensor data, and in certain clock synchronization algorithms. For

further details,see [26-28].

The input of data is accomplished by every processor reading the external sources

independently or by one processor reading the external sources and then distributing the

obtained value to the rest of the processors. In the first case, each processor would very

probably get a different value -- even if they werein perfectsynchrony - due to the

inherent instability in reading analog data. Hence, a subsequent exchange of values read

along with a mid-value selection is required to get a consistent value. However, this pro-

cess suffers from sensitivity to malicious faulty processors and interactive conMstency (or

Byzantine Generals) algorithms are essential where fault isolation and reconfiguration

are required.

The interactive consistency algorithm consists of the following steps:

(1) The source value is distributed to the Nprocessors.

(2) The received values are exchanged m times to handle up to m faulty processors.

(3) A consistent value is obtained by use of a recursive algorithm. When rn=l, this

reduces to a majority calculation.

The overhead for these interactive consistency algorithms can be considerable. N

must be at least 3m+l. The number of messages required to obtain interactive con-

sistency is of the order of N _-1. To give an idea of the actual numbers incurred in prac-

tice, some experimental results from the SIFT computer [251are used.

In SIFT, with five-way voting, only one fault can be located. The simple flight-

control applications currently running in SIFT use 63 external sensor values, each of
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which goes through the interactive consistency algorithm. From the data collected, exe-

cution times for steps (1) and (2) of the algorithm can be estimated, and a lower bound

determined for step (3). The following data were measured: step (1) : 3.05 ms, step (2)

: 2.22 ms, and step (3) : 6.57 ms (total 11.84 ms). For larger m, the step (1) execution

time should not change significantly, while the step (3) calculation would require at least

6.57 ms (very likely much more). The step (2) process consists of only message exchanges

and thus varies directly with the number of messages which are sent. The following for-

mula represents an approximate execution time for step (2) as a function of m:

2.22 N "_1 ms). \Ve may add the timing values for steps (1) and steps (3) above to this

this expression to obtain a lower bound for the overhead of the Byzantine Generals algo-

rithm in SIFT. Since the interactive consistency tasks must be executed at the data sam-

ple rate, a large portion of the available CPU time is consumed: see Table 7.

These results indicate the extremely high overhead imposed in an attempt to

achieve interactive consistency. It should be pointed out that there have lately been

some more efficient implementations of the Byzantine Generals algorithm [29] than have

been implemented on SIFT. However, even such implementations exhibit high overheads

as the number of faulty modules to be accommodated increases.

5.5. Reconfigurable and Non-reconfigurable Systems

To locatefaultsafterthey have been detectedby voting,diagnostictestsmust be

run. To ensureagreementamongst allnon-faultyprocessorsabout the resultsof the

tests,theinteractiveconsistencyalgorithmmust be executed.

Unfortunately,aswe have seen,thisalgorithmisextremelytime-consumingtorun.

Reconfigurablesystemsmust thereforecontend with a largeoverheadas compared to

non-reconfigurablesystems.
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Data Sample Period m--1 m--2 m----3

100 ms 11.8 % 25.1% >380 %

50 ms 23.7% 50.2% >760%

33 ms 35.9% 76.2% >1140%

25 ms 47.4% > I00 % > 1520%

m -- number of faulty processors accommodated

Table 7. Overhead of Byzantine Generals Algorithm: Lower Bound for SIFT
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However, reconfigurable systems have the advantage of dynamic redundancy

management. When widespread failures occur, it is possible to retire some clusters in

order to keep others at full strength. Also, by periodically purging itself of faulty com-

ponents, a reconfigurable system can survive in the face of more failures than can a

non-reconfigurable system. For example, if one started operation with a 7-cluster, the

reconfigurable system would not fail unless either (a) all but two processors fail, or (b)

more than m (m----2 for a 7-cluster, and 1 for a 4-cluster) processors fail between succes-

sive tests, while the corresponding non-reconfigurable system would fail if more than 3

processors failed. This does not automatically mean that a reconfigurable system is

necessarily better than a non-reconfigurable one, since as we shall see, timing require-

ments impose severe constraints on the size of reconfigurable clusters.

We shall contrast the reliability of reconfigurable and non-reconfigurable systems

with the following example. Assume that there is a single critical task in the system that

requires 1.6 milli-seconds to run, and that this task is dispatched every 50 milli-seconds,

and that the system must be ready to begin executing the task the moment it is

released. There is a total of N processors available. Processors fail according to an

exponential law with specified MTBF. The mission lifetime (duration between successive

service stages) is also specified.

In the following sections, we consider non-reconfigurable and reconfigurable systems

separately. In both cases, we assume that synchronization is by means of phase-locked

clocks. Since these can be made arbitrarily reliable and are common to both reconfigur-

able and non-reconfigurable systems, we do not consider the probability of clock failure

in what follows. Numerical results in the section on reconfigurable systems are based on

the lower bounds obtained from SIFT. Processor failures are assumed to occur indepen-
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dently, forming a Poisson process with mean interarrival time 5X lOs seconds.

5.5.1. Non-Reconfigurable System

Under the above assumptions, the probability of dynamic failure is simply equal to

the probability of static failure, i.e. the probability that fewer than [N/2"] processors fail

over the mission lifetime. This probability is graphed in Figure 27.

5.5.2. Reconflgurable System

We assume here that the interactive consistency algorithm will only be invoked

when a vote detects processor failure. The problem of replicating simplex data to

amongst multiple processors is not treated here: it is assumed that the slight variations

in analogue sensor data obtained without the Byzantine algorithm are acceptable. The

purpose of the interactive consistency algorithm here is to obtain agreement on diagnos-

tic tests. The assumptions are that the tests have 100_o coverage, and for convenience,

that the diagnostics take 3 ms. Clearly, the diagnostic period is insensitive to the value

of m. It is not difficult to alter the analysis to allow for a relaxation of these assump-

tions. Doing so may alter the numerical values presented, but will not change the quali-

tative nature of these results.

The execution time is bounded below by 2.22N'_q+9.6 milli-seconds. Since the

tusk execution time is 1.6 milli-seconds, an unreplenishable reserve of 50-1.6=48.4 milli-

seconds of time is available. If the overhead is smaller than this, the probability of

dynamic failure is equal to the probability of hardware failure: if not, it is equal to unity.

As may be seen from a simple calculation, for clusters with m;>2, the overhcad

exceeds the reserve of time, so that the maximum allowed size of the cluster is N--7,
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m=2. For this reason, if we start with more than 7 processors, the additional processors

will have to be on stand-by for inclusion upon a failure within the cluster. Failure occurs

if either during a single execution more than m failures occur in the cluster, or the pro-

cessor pool is exhausted, i.e. if there is an insufficient number of processors left to make

up a cluster.

The reconfiguration policy is simple. The system begins operation with either a 7-

MR or a 4-MR cluster (depending on the value of N). As processors fail, they are

replaced if spares are available. If the stock of spares is exhausted, further failures are

handled by the 7-cluster reconfiguring into a d-MR cluster. If N_7, only a single failure

can be tolerated. It is thus a combination of hybrid and adaptive voting.

Numerical results for the probability of failure of reconfigurable systems are plotted

in Figure 27 for a ready comparison with their non-reconfigurable counter-parts.

It is apparent from Figure 27 that while increasing the number of available proces-

sors in a non-reconfigurable system reduces its probability of failure, there is a lower

bound to the probability of failure for reconfigurable systems. This bound is caused by

the fact that the cluster size is limited to 7, since the overhead exceeds 100% for larger

clusters. There is therefore a point after which the probability of more than rn processor

failures over a single execution (aggregated over the mission lifetime) becomes the dom-

inant component in the probability of failure. As one might expect, the reconfigurable

system performs better than the non-reconfigurable system when the mission lifetime is

larger. This has been at the horrible price, in this case, of a 50.3% overhead.

Clearly, the results in Figure 27 are problem-specific, indeed, they are critically

dependent on the length of the inter-dispatch interval, the unreplenishable reserve of

time that is available, and the time taken to execute the Byzantine algorithm. Also,
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while the reconfigurable system may appear to be the better performer in Figure 27, this

is largely due to the large reserve of time available. Suppose that the task, instead of

taking a maximum of 1.6 milli-seconds to perform, took 35 milli-seconds. Then, the

reserve of time is 50-35=15 milli-seconds, and the largest reeonfigurable cluster that

could fit in this reserve is N=4, m=l. In Figure 28, we display results for such a task.

Naturally, the reconfigurable system comes out much more poorly here.

6. CONCLUSION

In this report, we have characterized real-time computers by (i) introducing new

performance measures for computers used in the control of critical processes, and (ii)

applying the measures to design and analysis of of real-time computers.

Studying the behavior of the controlled system as a function of the computer

response time provides a means for the effective design of computer controllers in the

context of controlled processes. As we saw in the examples in Sections 3 and 4, this

includes such things as control policy. This means that while the cost function is defined

explicitly in terms of the controller response time, all facets of the controlled process are

implicitly included in the calculations.

Due to the objectivity of the cost functions, they can be used with some confidence

for the design of real-time control computers (architecture and operating system design)

as optimization criteria. The probability of dynamic failure is to be used as a pass-fail

criterion with comparison of rival systems on the basis of the mean cost limited to sys-

tems exhibiting an acceptably low probability of dynamic failure. The inclusion of

hardware or life-cycle costs into the analysis is also possible, as indicated in Section 5.

In addition to the applications treated in Section 5, the performance measures are

useful as criterion functions in the following areas:
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(1) Optimal placement of checkpoints for backward error recovery.

(2) Optimal task allocation and realloeation strategies.

(3) Optimal control of queues at shared resources.

(4) Optimal routing policies at interconnection networks.

(5) Measuring sensitivity of reliability and operating overhead on the redundancy and

bandwidth of the interconnection links.

(6) Optimal event-handling and time scheduling.

The design procedures used at present for control computers are ad-hoc, principally

because of the lack of adequately objective means for the characterization of controller

performance. The expression, through a scalar metric, of the performance of the con-

troller in the context of the process it is controlling, is important in making the con-

troller design and evaluation process systematic. All facets of the controller-controlled

process relationship are taken into account in the performance measures here presented:

while the measures are explicitly functions of the response time of the controller, they

are implicitly functions of the characteristics of the controlled process. It is this fusion of

controller and controlled process characteristics that is novel, and that distinguishes the

work presented in this report from those of others. The chief utility of these measures is

also derived from this accounting of the synergistic coupling between controller and con-

trolled process.
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APPENDIX: EXPRESSIONS FOR FINITE COST FUNCTION

Finite cost functions for Example 2 in Section 2.4 can be expressed by an if-then-else

construct as follows:

• if xlix2i>0 then

if I x2i I >k then

1

g(xi,_) = -_ [tl(xi,k,_) + t,(xi,-k,_)]

else

1

g(xi,_) _----_ [tl(xi, sgn(x2i)k, _) + t2(xi,-sgn(x2i)k, _)]

else

if [x2il >k then

1

g(×_,_)= i It:(×_,k,_)+t2(xi,-k,_)]

else

1 [tl(xi ' -sgn(x2i)k, _) + t2(xi, sgn(x2i)k, _)]g(×i,_)= -_

end if;

where a -----H/m, y(x2i,k)_---x2i+k, Xi=(Xli,X2i) T,

2a I xlil-y2(xei,k}-2a I y(xei,k) [_(x_,k,_,)=
4ay(x2i,k)

[y(x2i,k)(l+vff)[
tl(xi,k,_ ) = _ +

a
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[(+r(xi,k,_)4 [Xli[-[Y(X2i,k)](_+_(xi,k,())_r2(xi,k,_) if __<2a Ix_i[-y2(x2i,k)

a 2 2a [y(x2i,k) [

t2(xi'k'_) = _4 Y2(X2i'k)+2 /Yz(X2i'k) [xli[- [Y(X2i'k)[ _ otherwise
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