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Abstract. Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films
of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported.
X-ray diffraction patterns reveal that the films were preferentially oriented along the (111) direction.
The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap
showed strong thickness dependence. The average film hardness and Young’s modulus obtained from load-
displacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of
(111) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly
that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth
indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from

the nanoscratch test was ~0.4.

1 Introduction

Zinc telluride (ZnTe) is one of the important II-VI com-
pound semiconducting materials which have potential ap-
plications in a variety of solid-state devices such as solar
cells, photodetectors, light emitting diodes and Terahertz
generators and detectors [1-3]. ZnTe is a zincblende
electro-optic crystal in the far infrared range, but also
has the largest emission efficiency and nearly the high-
est frequency bandwidth in the mid-infrared range [4].
Leitenstorfer et al. [5] have reported that the thickness
of the electro-optic crystals is a crucial factor influenc-
ing the temporal wave form and spectral bandwidth of
the measured THz pulse. In order to achieve broad fre-
quency bandwidth, ZnTe crystals with thickness less than
10 pm are required. It is almost impossible to prepare self-
supporting crystals with a large diameter and such low
thicknesses. Therefore, it is extremely important to fabri-
cate high-quality ZnTe thick films of the order of 10 pm or
greater, directly on to appropriate substrates with large
size.

There are several reports on deposition of polycrys-
talline ZnTe thin films by various techniques [6-15].
Most of the previous research has focused primarily on
the structural, electrical and optical properties of ZnTe
both in the form of bulk crystals and sub-micron thin
films [16-20]. Limited attention has been paid to the me-
chanical properties of ZnTe thin films. Mechanical prop-
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erties assume importance especially in the case of thick
films since surface layers of these films may be exposed to
external mechanical effects including wear, damage and
thermal degradation [21]. Recently, nanoindentation tech-
niques have been employed extensively to quantify the me-
chanical properties of thin films [22-25] such as hardness,
elastic modulus and adhesion. Among these, the adhesion
of coatings to the substrates is a key factor for the mechan-
ical behavior of coated parts [24]. In addition, the grain
size and grain morphologies have a direct influence on the
mechanical properties of the films.

In this work, we present results on the preparation and
characterization of ZnTe films deposited on to borosili-
cate glass substrates using the thermal evaporation tech-
nique. The films were characterized for structure, optical
and nanomechanical properties.

2 Experimental

ZnTe thin films of different thicknesses were deposited by
evaporating pure ZnTe compound (99.995%, supplied by
Aldrich Chemicals) onto cleaned borosilicate glass sub-
strates at ambient temperature. The ultimate vacuum
of about 6 x 107 mbar was reached using a diffusion
pump backed by a rotary pump. The glass substrates
were cleaned using detergent solution, followed by multi-
ple rinsing in distilled water to remove traces of detergent.
The substrates were then cleaned in an ultrasonic cleaner
for 15 min and subsequently dried in flowing hot air.
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The evaporation rate as well as the film thickness was
controlled using a quartz crystal monitor. The distance
between the source and substrate was maintained at 5 cm
for all the experiments. Deposition time, evaporation cur-
rents have been varied to make films of different thick-
nesses. The thickness of the films was determined by a
surface profilometer (XP-1 of Ambios Technology, USA).
The structure of the films was determined using a powder
X-ray diffractometer (Philips PW3710) equipped with a
position-sensitive detector using Cu K, (=1.5418 A) ra-
diation. Spectral transmittance curves of the films were
recorded in a UV-VIS-NIR spectrophotometer (Model V-
570 of JASCO International, Japan), scanning from 300
to 2500 nm. The optical properties, i.e. refractive index
and band gap of the film, were derived from the spectral
transmission curves. The surface topography, microstruc-
ture, grain area analysis and particle size were investi-
gated by using an Atomic Force Microscope (SPA-400 of
SII, Inc. Japan), operating in the intermittent contact dy-
namic force mode. The root mean square (rms) roughness
was calculated over a 2 ym X 2 pum scan area.
Indentation experiments were performed using a
Triboscope'™ Nanomechanical Testing System (Hysitron
Inc., Minneapolis, MN). The system was fitted with a
Berkovich indenter (three-sided pyramid shape tip). Prior
to the nanoindentation experiments, the tip area function
was calibrated by performing few nano-indentation exper-
iments on fused silica. The calibration method is based on
the assumption that Young’s modulus of elasticity is in-
dependent of indentation depth. Thus, fused silica, which
has a relatively constant Young’s modulus (69.6 GPa), is
used as a standard sample for calibration. To determine
the area function, a series of indents were introduced at
various contact depths. The contact areas were then cal-
culated using empirical equations for the Berkovich tip. A
plot of the computed area versus contact depth was then
obtained. By fitting this plot with a high order polyno-
mial, an area function relating the projected contact area
to the contact depth was obtained for the Berkovich tip
that was used. The hardness of a material is defined as
its resistance to local plastic deformation [26,27]. Thus,
the hardness, H, could be determined from the maximum
indentation load, Pyax, divided by the contact area, i.e.

Pmax
B 1)

H=

where the contact area (A) is a function of the penetration
depth, h, and can be determined according to equation (2)

A(h) = COh2+Clh+C2h1/2+C3h1/4+, ] .+08h1/128. (2)

This was used as the calibrated area function in subse-
quent experiments on ZnTe films. It may be noted that
only the constant Cjy is used, if it is assumed that a
Berkovich indenter has a perfect tip. However for im-
perfect tips, higher order terms have to be taken into
account and these are obtained from the tip area func-
tion curve fit for a given tip. In the current case, the
values are Cp = 24.5, C; = —2.2025 x 103, Cy =

2.158 x 10°, C3 = —1.7098 x 106, C;, = —3.4482 x 106
and Cs = —1.9066 x 10%. The Young’s modulus, E, of the
thin film, can be obtained using equation (3)

2
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where v and F are Poisson’s ratio and Young’s modulus,
respectively, and the subscripts 7 and s refer to the inden-
ter and test material. The indenter properties used in this
study are E; = 1140 GPa, Poisson’s ratio for the indenter
is v; = 0.07. E} is the effective elastic modulus and it can
be determined from the equation

«_ VT 55
B =5

where S is the stiffness of the test material, which can be
obtained from the initial unloading slope by evaluating the
maximum load and the maximum depth, i.e. S = dP/dh.
[ is a shape constant that depends on the geometry of the
indenter and is 1.034 for the Berkovich tip.

During the test, contact mode AFM scans were ob-
tained before and after each indentation. A load-depth
curve was also recorded for each indent. The tests were
conducted under load control, using peak loads in the
range between 200 uN and 10 mN. A partial unload func-
tion is used in this experiment. A loading rate of 50 uN/s
was used for all the experiments. A hold period of 10 s
was applied at peak loads. After 10 s hold, unloading
(upto 50% of peak load) starts with an unloading rate of
50 uN/s. The hold periods were used to allow time depen-
dent plastic effects to diminish. In this way, the loading
curves obtained for various peak loads were found to ex-
hibit good reproducibility. This type of load function is
useful to find out where exactly the elastic-plastic trans-
formation occurs and also to obtain depth dependent me-
chanical properties. To find out coefficient of friction of
ZnTe films, nanoscratch test was performed. A ramp force
(normal force increases with time) scratch mode was used
in this study. A 6 micron length scratch made on films
with a normal force varied from 0 to 1000 uN in 30 s.

(4)

3 Results and discussion

ZnTe coatings were deposited for different durations to
observe the evolution of the film thickness at a rate of
deposition of 400 nm/min. The film thickness increased
with increasing growth time. In this process, it was found
that beyond a critical thickness (~4 micron), films delami-
nated from the substrate. To overcome this problem, depo-
sition rate was decreased to 300, 200 and 100 nm/min and
the time of deposition increased. This process increased
the critical thickness for peel-off to 6 and 9 micron, for
the rate of deposition of 300 and 200 nm/min, respec-
tively. Figure 1 shows a typical X-ray diffraction profile of
the ZnTe film grown on amorphous glass substrate. Only
crystalline peaks from (111) orientation ZnTe were ob-
served. Due to the very high film thickness, amorphous
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Fig. 1. X-ray diffraction of ZnTe thin films of different thick-
nesses (a) 9 pm and (b) 4 pm reveals that the films are oriented
in (111) orientation.

glassy background was not observed in the X-ray diffrac-
tion pattern. The lattice constant obtained from the (111)
peak for the ZnTe layer, is 6.1 A, which is in good agree-
ment with the reported values. The crystallite size of the
films was 40 nm, calculated using Scherrer’s formula. Very
recently, Shaaban et al. [28] have deposited ZnTe films at
various thicknesses i.e. from 300 to 600 nm on glass sub-
strates by thermal evaporation technique. But their X-
ray diffraction reveals that the films are polycrystalline of
zinc-blende structure with peaks at 260 = 25.42°, 42.20°,
49.87° and 67.14° corresponding to (111), (220), (311)
and (331) orientations, respectively. (JCPDS Data file:
01-0582-cubic.) In the present case, a combination of rate
of deposition and the film thickness played a major role
in the evolution of (111) orientation in the films.

Figure 2 illustrates that the typical measured spec-
tral transmittance curves of ZnTe films of three different
thicknesses. The refractive index was determined using
Swanpoel’s method [29,30]. According to this method, the
value of refractive index of the film, n, at a wavelength A
can be calculated using the following expression:

1/2

n= [N+(N2 — s?)L/2 (5)

where
Ty —Tn s2+1

TotTom 2 (6)

Here T and T;,, are the transmittance maximum and the
corresponding minimum at a certain wavelength A and s
is the refractive index of the substrate at that wavelength.

The thickness of the films in Figures 2a—2c were 1.5, 4.0
and 10 pm respectively and the corresponding refractive
indices at a wavelength of 2000 nm were 2.74, 2.6 and 1.80
respectively.

For an optically homogeneous film the refractive in-
dex is constant across the thickness of a film at a given

N = 2s
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Fig. 2. Measured spectral transmission curves of ZnTe thin
films at different thicknesses (a) 1.5 (b) 4, and (c¢) 10 pm.

wavelength. This is manifested in the form of fringes of
constant height in the dispersion free region of the refrac-
tive index. However, for an optically inhomogeneous film
the dispersion in refractive index is thickness dependent
and this is inferred from the variable fringe height in the
measured spectral transmittance curve for such a film. It
is evident that all the films in the current study are op-
tically inhomogeneous. The origins of inhomogeneity can
either be chemical or microstructural in nature. Chemical
inhomogeneity leading to optical inhomogeneity in ther-
mally evaporated ZnTe thin films has been reported ear-
lier [31]. Since Zn has a higher vapour pressure than Te,
films tend to be Zn rich upto a certain thickness and stoi-
chiometric thereafter. This non-stoichiometry may be be-
low the detectable limits of X-ray diffraction in the current
study. Thin films deposited by thermal evaporation nor-
mally exhibit a columnar microstructure with a thickness
dependent diameter of columns causing variable porosity
in the films, across their thickness. This, in turn, leads
to variations in refractive index across the thickness and
therefore optical inhomogeneity. A further consequence of
the columnar microstructure is, especially at higher thick-
nesses, increased scattering of light due to loss of coher-
ence between the primary beam and the beam reflected
between the film boundaries resulting in the disappear-
ance of the interference which in turn decreases the total
transmission from the film.

In the vicinity of the fundamental absorption edge,
for allowed direct band-to-band transitions, the absorp-
tion coefficient is described by the

() K (hV — Egpt)m o
alhy) = —————

hv
where K is a characteristic parameter (independent of
photon energy) for respective transitions, hv denotes pho-
ton energy, is E_f;pt optical energy gap and m is a num-
ber which characterizes the transition process. Different
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authors [32-34] have suggested different values of m for
different glasses, m = 2 for most of the amorphous semi-
conductors (indirect transition) and m = 1/2 for most of
the crystalline semiconductor (direct transition). In the
case of different thicknesses of polycrystalline ZnTe thin
films the direct transition is valid. The optical bandgap
value for (111) oriented ZnTe films exhibited 2.6, 1.9 and
1.33 eV for the films shown in Figures 2a—2c, respectively.
It is evident that the increase in thickness leads to a de-
crease in optical absorption edge/bandgap, as observed in
oxides and nitrides earlier [35,36]. Defects in thin films
originate during the formation of the films, thus unsatu-
rated bonds can be produced as a result of an insufficient
number of atoms being present. These bonds are responsi-
ble for the formation of some defects producing localized
states in the films. The thicker films increase the width
of the localized states in the optical absorption edge or
band gap; consequently the optical absorption edge de-
creases with increase in thickness [37]. The deviation in
the band gap can also be due to the excess of unbound
Te present in the ZnTe films. The presence of elemental
Te introduces a significant fraction of electronic levels in
the band gap close to the valence band edge of ZnTe, with
a consequent reduction of the energy associated with the
direct transition [38].

The microstructure of ZnTe films is shown in Figure 3.
AFM micrographs reveal that the particle size for the film
of thickness 4 pm was 160 nm, whereas it increased to
380 nm for the film of thickness 10 pm. The root mean
square roughness of the films was 0.4 and 3.3 nm for the
films of thickness 4 and 10 um, respectively. It can be
seen from the films that the 10 pum thick films showed
a larger particle size distribution than the 4 pm films.
This indicates a thickness dependent grain growth in the
coatings.

The hardness and modulus of the films were calcu-
lated using Oliver and Pharr analysis [39,40]. The re-
ported microhardness value of bulk ZnTe crystal was
900 £ 50 MPa [41] and 3.5 GPa for 1.2 pm thick ZnTe
layers [42]. For the films in the current study, the high-
est hardness of 4 GPa and modulus of 70 GPa were ob-
tained. It can be noted that the hardness of the films
were 5 times greater than the bulk ZnTe crystal. In or-
der to measure the “film-only” properties, a commonly
used rule is to limit the indentation depth to less than
10% of the film thickness [43]. Figure 4 shows that the
value of hardness increases with decreasing the indenta-
tion depth. At lower depths the hardness reached an aver-
age value of 6 GPa and it decreased to 3.5 GPa at higher
depths. This type of behaviour is known as indentation
size effect (ISE). Increasing strength at small length scale
(so called ISE) has been observed in many metallic sys-
tems [44]. Since conventional plasticity theories do not in-
clude any material length scales, they cannot be used to
model indentation size effects in thin films with indents
at the micron-scale and sub-micron scale, where the size
effect is evident. Strain gradient plasticity theories [45,46]
are, therefore, needed to explain the size effects. Nix and
Gao [47] have developed a mechanism based strain gra-

Fig. 3. Atomic Force Microscope images of ZnTe films of (a)
4 and (b) 10 pm thickness.

dient (MSG) model that can be used to explain the in-
dentation size effects. The MSG theory assumes that the
indentation is accommodated by circular loops of geomet-
rically necessary dislocations (GNDs) with Burgers vec-
tors normal to the plane surface. The model combines the
Taylor relation [48], the Mises flow rule and the Tabor re-
lation [48] to obtain the following characteristic expression
for the depth dependence of hardness,

H 1 h* 8

Hy + h ()
where H is the hardness for a given indent depth, h; Hy
the size independent hardness, and h* is a characteristic
length parameter that characterizes the depth dependence
of the hardness. This model predicts that the square of the
hardness should be linearly related to the reciprocal of the
indentation depth. The linear relationship is in agreement
with the plots of nano-indentation data obtained from the
ZnTe nanocrystalline thin films (crystallite size ~40 nm)
examined in this study. This is shown in Figure 5, in which
linear relationships are obtained between (H/Hy)? and
1/h, for (111) orientated nanocrystalline ZnTe thin films.
The hardness Hy, of an infinitely large dislocation where
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Fig. 4. Variation in hardness values of ZnTe films with in-
creasing the contact depth of the Berkovich indenter.
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Fig. 5. The relationship between (H/Hy)? and 1/h, for (111)
orientated nanocrystalline ZnTe thin films, which is known as
indentation size effect.

size effects are negligible is 0.493 GPa, obtained from the
intercept of the line with the y-axis in Figure 5. h*, which
characterizes the depth dependence of the hardness as is
obtained from the slope of the line in Figure 5, is 1600 nm.
Since this is the first report on the existence of ISE in
ZnTe films, we cannot compare our results with any other
reports.

No substrate effects have been found on the behaviour
of the hardness with increasing penetration depth. Even
when the penetration depth is very large (max. 300 nm at
10 mN load), the composite hardness value never equals
the substrate hardness value, which is 7 GPa for glass sub-
strates. It may be due to the fact that most of the plas-
tic deformation is limited in thin films. Interestingly, no
pile-up or sink-in effects were observed after indentation
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Fig. 6. (a) AFM image of residual Berkovich impression af-
ter removing the load. No pile-up and sink-in effects observed
and were confirmed from this image. (b) Indent profile of the
impression (direction shown with an arrow mark).

revealed by the atomic force microscope images as shown
in Figure 6a. The line profile, shown in Figure 6b, also
reveals the absence of the pile-up and sink-in effects. No
pop-in behaviour observed in the load- displacement data,
which indicates the transition from elastic to plastic defor-
mation due to the nucleation of dislocations. The average
elastic modulus of the ZnTe films was 70 GPa, as shown in
Figure 7. The coefficient of friction (COF), defined as the
ratio of lateral force to normal force (LF/NF), has been
calculated using the scratch test. The average COF ob-
tained from the scratch test was 0.4 as shown in Figure 8.
The AFM image of scratch on ZnTe films is shown in Fig-
ure 9a and the corresponding line profile along the scratch
is shown in Figure 9b. The films adhere better with the
substrate even for film of thickness 10 pm deposited on
glass substrate without significant delamination. No ma-
terial pile up observed on both sides of the scratch was
found, though sharp Berkovich tip was used. This can be
attributed to the higher film hardness.
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Fig. 8. The coefficient of friction of ZnTe films on glass sub-
strate. This graph is obtained from the nanoscratch test using
nanoindentation system in the scratch mode.

4 Conclusions

Zinc telluride (ZnTe) thin films oriented along the (111)
direction have been deposited by resistive thermal evap-
oration technique. Films of thickness up to 10 um have
been realized without significant delamination. The opti-
cal bandgap value decreased with increasing film thick-
ness. Nanomechanical hardness of the (111) oriented
Zn'Te films was 5 times higher than the bulk ZnTe crystal
value. Significantly, indentation size effect was observed in
the semiconducting (111) oriented ZnTe films.

The authors acknowledge the facilities provided under the
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Fig. 9. (a) AFM image of residual scratch after removing the
load. No pile-up and sink-in effects observed on the sides of the
scratch were confirmed from this image. (b) Scratch profile of
the scratch (direction shown with an arrow mark).
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