
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19830010018 2020-03-21T05:25:34+00:00Z

4

JNASA-CR-I6SE i3) QUEUEING ANALYSIS OF A	 M83-18289
CANONICAL MODEL OF hEAL-TIFF FELTIFE.00ESSOBS
Inichigan Uciv.)	 26 p 8C A03/!!F ACI

CSCL 09B	 Unclas
G3/40 02754

Queueing _'analysis of a Canonical Model of Real Time
Multiprocessors

C. M. Krishna
K G. Shin,

Department of Electrical and Computer Engineering
The University of Michigan

Ann Arbor, M1 48109.

February 6, 1983
	

J ^=

C \
	 ^Q43

Q
(<^N	 '11

^ two

This work was supported by N;_3A Grant No. NAG 1-296. All correspondence should be ad-
dressed to Professor K v. Shin. Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily reflect the view of the fund-
ing Pgency.

ORIGINAL PAGE 19
OF POOR QUALITY

Queueing Analysis of a Canonical Model of Real Time
Multiprocessors

ABSTRACT

Multiprocessors are beginning to be regarded increasingly
favorably as candidates for controllers in critical real-time control
applications such as aircraft. Their considerable tolerance of com-
ponent failures together with their great potential for high
throughput are contributory factors.

In this paper, we present first a logical classificatio:+. of mul- 	 v
tiprocessor structures from the point of view of control applica-
tions. We point out tha: one important subclass has hitherto been
neglected by the ana:ysts. This is the class of systems with a com-
mon memory, minimal interprocessor communication and perfect
processor syr..cnetry.

The performance characteristic of the greatest importance in
real-time appILZ tions is the response time distribution. Indeed, we
have shown in a separate paper [^c] how- it is possible to character-
ize rigorously and objectively the performance of a real-time mul-
tiprocessor given the application and the multiprocessor response
time distribution and component failure characteristics. We there-
fore present here a computation of the response time distribution
for a canonical model of real-time multiprocessor.

To do so, we approximate the multiprocessor by a blocking
model and present a means for efficient analysis. Two separate
models are derived: one created from the system's point of view,
and the other from the point of view of an incoming task. The
former model is analyzed along largely conventional lines. For the
latter model, an artificial server is used. and the system
transformed into a queueing network. Validations show that the
approximation is good.

February 6, 1983

ORIGINAL PAGE W

.7- 	 OF POOR QUALITY

handled by an immediate extension of this approach. To solve this problem, we

employ artificial servers. Artificial or fictitious servers have been used in a

number of models. In [6], they are employed in the analysis of an open queueing

network with blocking. Our analysis, although superficially similar, is non-

iterative and treats what amounts to an M/M /c queue with blocking. In such a

setting, the iterative technique presented in [6] is not applicable and the artifi-

cial server approach must be combined with some means of determining the

state of the system.

We begin by noting that the system as shown in Figure 2 can be approxi-

mated by that in Figure 3. The approximation is justified since the time spent by

a task receiving service (as distinct from waiting in the queue) at the dispatcher

is negligible compared to the memory service time. According to our approxi-

mate model, then, an incoming task waits in the Memory-Dispatcher (M.D.)

queue, and, provided it is admitted (see below for definition), receives service

first from the memory and then is assigned a processor for execution. Tasks are

processed by the M.D. only when the number of tasks already admitted is less

than the number of processors. A task is said to be admitted when it is either in

the process of accessing the common memory or executing at a processor. The

Memory-Dispatcher waits for a processor to become free, then transfers the

relevant software to the target processor.

To analyze this model, we portray it from two complementary points of

view. The first, which is the system-oriented model is as in Figure 3. On the other

hand, Figure 4 depicts the system as seen by an incoming task, i.e., it is a task-

oriented model. We consider each of the models in turn. The system oriented

model will first be analyzed to provide parameter values that will then be used in

the task-oriented model to obtain task response time distributions.

_ a _	 OMON& PANE a

OF POOR QUALITY

ences the architecture of the interconnection structure.

How well a multiprocessor controller perf eirms clearly depends on the

requirements of the application. We showed in [2J how controller performance

could be rigorously and objectively evaluated, given the control application and

multiprocessor response time distribution. Keeping this foundation in mind, wa

evaluate in this paper the performance of a canonical model of multiprocessors

for real-time control.

This paper is organized as follows. In the following section, we classify real-
1.

time multiprocessors into three basic logical families. Then, in Section 3, we

analyze an important subclass of multiprocessors, obtaining an approximate

expression for its response time. We conclude in Section 4 by describing briefly

some extensions of this work presently being undertaken, and their implications

for real-time multiprocessor design.

2. Canonical Models of Real Time Multiprocessors

The execution by a processor of any task involves, first, the transfer of all

or part of the relevant software to the processor private memory or cache, and

then, its execution. Because the entire set of programs that the control system

will ever execute is well-defined, the designer has an option: the system can

either have a common, or mass, memory that contains all the applications

software -- thus requiring the transfer of the relevant software upon a task

trigger s -- or every processor can hold in its private memory all the applications

software it will ever need. The latter alternative eliminates the need to transfer

software, thus reducing overall response time. Choosing this alternative

presents the designer with two sub-alternatives: either provide each processor

1. The operating environment is modelled as the source of a stream of task triggers, i.e., en-
vironmental stimuli that cause a particular set of tasks to be performed by the multiproces-
sor.

1	 .

.i

OMOMAL PAGE 18
-3- 	 OF POOR QUALITY

with a private memory so large that the set of c-)ntrol programs required in the

control of the process can be held in it in its entirety, or preallocate tasks to

specific processors.

Based on the above observation, the following can be considered to be

canonical logical models of multiprocessors used in real-time control.

Type 1: A Type 1 multiprocessor controller is one in which the processors do not

specialize; in other words, tasks are not reserved for specific processors, and

each peocessor in the system may be allocated any task. The process of task	 1
ri

allocation is typically dynamic. This type is divided im-o two subclasses depend-

ing on the size of processors' private memory. In a Type 1a system, the private
i

memory of the processors is large enough to hold both the applications and exe-

cutive software in its entirety z . This system is ideal for applications in which a

small number of relatively independent and small tasks form the job mix. One

example of such Type la is the Cl: ZFCS [8] system of the united States Air

Force.

In a Type 1b system on the other hand, the private memory is too small to

hold all the applications software and requires the transfer of software with each

task trigger. This transfer can be either single, or involve paging.

One can see the tradeoff between requirements of memory size and task

execution time from this subclassification. As a general rule, the processors

allocated a task execute it in its entirety without interruption unless some of

the processors fail. There is thus little or no interaction between the individual

processors in this type of system.

The best known implementation of the Type lb structure is the Draper
a

Laboratory's Fault-Tolerant Multiprocessor (FTMP) [5]. 	 i

2. With memory densities rising and costs falling, this may be no longer as difficult as it once
seemed.

ORKMINAL PAGE 1S

-4-
OF POW QUALITY

Type 2. In a Type 2 system, the processors are preallocated specific tasks (or

subtasks) and the software related to these is loaded in their private memory.

With the identification of specific tasks with particular processors comes the

problem of reallocation of tasks on processor failure. Thus, the system of this

type is inflexible to reconfigure itself upon failure but its reliability is obtained

in general through physical redundancy in system components. In general, Type

2 is used when the individual tasks have significantly different time/safety criti-

cality (e.g. flight control and navigation tasks in aircraft applications). Proces-

sor interaction can be considerable. The SIFT [9] system built by SRI Interna-

tional is an example.

Type 3. A Type 3 system is a composite C a Type 1 and a Type 2 system.

Figure 1 shows graphically the above classification of multiprocessors.

Notice that the classification is logical and is different from most conventional

ones that are usually based on physical interconnection structures.

A considerable body of literature has developed around the problem of

analyzing multiprocessors. Almost invariably, the .procedure is to use a Markov

model of the system to solve for such parameters as throughput, reliability,

availability, etc. Type la systems have been the focus of a great deal of atten-

tion. The tendency of almost all authors is to assume identical processors and an

identical exponential service rate distribution for all job classes, upon which the

system degenerates into an M/M/m queue. This analysis is then embedded in a

determination of the multiprocessor performance. One good example is the

work on closed-form estimations of performability by Meyer [3].

Type 2 systems can be modelled as queueing networks, and there is a large

body of literature on this topic.

Type lb, however, has been almost totally neglected. This is odd,

l

ORIONAL PAW
- 5 -	 OF POOR QUALITY

considering that one of the few multiprocessors actually to be constructed (e.g.

FfMP[5]) is an example of this type of system. Also, it is likely that Type 2b sys-

tems will grow in importance as time progresses since it is ideal when the job

mix is composed of a large number of tasks, each called relatively inftequentlly.

Again, the analysis of Type 3 systems requires, as a prerequisite, the analysis of

Type 1 systems. In this paper, we shall analyze an important subclass of the

Type lb system.

3. Response-Time Analysis of Type lb System Without Paging

3.1. Description of the Real Time Multiprocessor

The multiprocessor we analyze is shown in Figure 2. It has a dispatcher allo-

cating tasks to c identical processors3 . Service at the dispatcher is FCFS, and

all the tasks place an identical (statistically speaking) demand upon the compu-

tational resources of the system.

When a processor is assigned a task, it first sends to the common iaass

memory for the relevant applications software. This is the only reference the

processor makes to the common memory during a single execution. Tasks

arrive at a Poisson rate of X, and all service rates are exponential (in Section 3.5

we also consider non-exponential service rates): at the processors it is µ, and at

the memory the software transfer rate (per task) is Am. Note thatµ represents

the actual execution rate for an individual task on a single processor; it does not

take into account software transfer time.

A point tacitly made in almost all work in this area is that the input process

is Poisson, 'and that all service rates are exponential. The principal reasons for

such an assumption are that (i) while both input and service distributions are

general in practice, they can usually be approximated well by Poisson and

3. Since processors may fail during a mission lifetime, c is a random variable.

- e -	 ORIMNAL PAGE IS
OF POnR QUALITY

exponential assumptions, and (ii) that analysis of a system with general arrival

and service distributions is almost impossibly difficult.

The first point ensures that the exponential assumption leads to at least an

approximate model of reality. It is important, however, to check this fact for

each particular model by employing alternative approaches, eg., simulation. In

this paper, we carry out this task by means of a simulation program that

assumes Weibull service distributions. The exponential distribution is a special

case of the Weibull. By varying the standard deviation of the service distribution

while keeping the mean constant, we obtain an indication of the range of input

intensities for which the exponential assumption is a good approximation.

It is readily seen that in this model, there is the problem of simultaneous

possession of resources by the tasks. That is, there is a period when, immedi-

ately after being allocated a processor by the dispatcher, the processor queues

up for service at the common memory. for the applications software. During this 	 j

period, the processor is effectively locked out, i.e., it is forced to remain idle.

Note that the present system is assured to admit of no multiprogramming.

Since there is a period when a task is in possession of both a processor and

the common memory, this multiprocessor does not fit into any of the well-

behaved queueing models (such as M/M/m, G /b. .n, etc.). There are two

approaches to obtaining a solution for the response time distribution. The first

is iterative and employs the method of surrogate servers as in [4]. The second,

which we present here, also involves surrogate or artificial servers but is non-

iterative in nature. It consists of approximating the multiprocessor by a model	 a
in which simultaneous possession of resources does not occur, but where block-

ing takes place. We have thus translated our problem into the context of a

blocking model. An important consequence of this, which we shall discuss in

Section 4, is that the analysis of the case where paging is allowed for can be

r	 .
r:

-7-
	 OF POOR QUALM

handled by an immediate extension of this approach. To solve this problem. we

employ artVicial seruers. Artificial or fictitious servers have been used in a

number of models. In [6], they are employed in the analysis of an open queueing

network with blocking. Our analysis, although superficially similar, is non-

iterative and treats what amounts to an M/M /c queue with blocking. In such a

setting, the iterative technique presented in [6] is not applicable and the artifi-

cial server approach must be combined with some means of determining the

state of the system.

We begin by noting that the system as shown in Figure 2 can be approxi-

mated by that in Figure 3. The approximation is justified since the time spent by

a task receiving service (as distinct from waiting in the queue) at the dispatcher

is negligible compared to the memory service time. According to our approxi-

mate model, then, an incoming task waits in the Memory-Dispatcher (M.D.)

queue, and, provided it is admitted (see below for definition), receives service

first from the memory and then is assigned a processor for execution. Tasks are

processed by the M.D. only when the number of tasks already admitted is less

than the number of processors. A task is said to be admitted when it is either in

the process of accessing the common memory or executing at a processor. The

Memory-Dispatcher waits for a processor to become free, then transfers the
w

relevant software to the target processor.

To analyze this model, we portray it from two complementary points of

view. The first, which is the system-oriented model is as in Figure 3. On the other

hand, Figure 4 depicts the system as seen by an incoming task, i.e., it is a task-

oriented model. We consider each of the models in turn. The system oriented

model will first be analyzed to provide parameter values that will then be used in

the task-oriented model to obtain task response time distributions.

.

ii

I

-e-	 OftWJAL 	 to

3.8. sYUem-0 	ja Model	

QU45jtr

The quantities that this model provides us with are f pjal where we define pia

to be the probability that there are i tasks in the M.D. queue (including the one

receiving service at memory if no blocking is taking place), and that j proces-
sors are executing (i.e., the applications software has been transferred to these j

processors and actual execution is taking place). Keep in mind that blocking of

incoming tasks begins to occur when i+j=c and a new task arrives
"Wore any

admitted task has been completed.

Note that unless otherwise stated, a variable is henceforth assumed to be ^.

zero if one or more of its subscript indices become negative. The state-

transition diagram appears as Figure 5 and assuming steady-state, the following

global balance equations can be written down:

XP0.0 = µP0.1	 (1)

(A+jµ)P0a = (j+l)/4PO.)+1 + /1mP1.) -1 	for j<c	
(2) ,

(X+Lµ)PO.c = µmP 1.0 - 1 	
(3)	

j

('\+µM)Pj.0 = APj-1.0 +µpj . 1	 for i>0	
(4)

('\+j'4+µm)Pj4 ='\Pj-1.)+µmP' + la-1+(j+l)µPj.7+1 for 0<j<c, i>0
(5)

(jt+cµ)pj,. = \p j- 1.c +µmp i + l.o - 1	 for i>0
(6)

The boundary condition is:

2 t Pj.) = 1
Inc 1s0	

(7)To solve for p1•) , we use the method of generating functions.

Define

gj(z) = 2 I jzi
1.0	 (g)

ORIGINAL PAGE 13

OF POOR QUALITY

Using generating functions and manipulating, we obtain the following reoursion

for c> 1:

1^(1—z)+µm 	 µmSIM =	 µ	 go (Z) — µ Po.o	 (9)

g j+^(Z) =
A(1 —z) +jµ+jtLm gi(Z) —	 µm

gj—,(Z)µ(j+1)	 zµ(j +1)

µ(j+1) NJ + zµ(j+1) NJ-1 	for 0<j<c	 (10)

6c(Z) = z[A(1 z)+cµ] Bo—i(z) — z[X(1 µz) + cµ] Po .c-i 	 (11)
From (9) and (10), we have

g j(z) = Aj(z)go(z) + L B; a(z)Po .i	 for0sjsc	 (12)
s=o	 ,

j
where the coefficients are defined by the following recursion for 1 !S j < c and

i<j- 1:

AG(z) = 1

At(Z) _
all—z)+µm

µ
A(1—z)+jµ+µm	 _ µmAjei(z) =	 A+1)	

Aj(z)	
Zµ(j+1)

Aj'i(z)

A (1—z) +jlA+µm 	 µmBj +i.i(z) =	 µ(j+1) 	 Bja(z) —
Zµ(j +1) Bj-is(Z)	 (13)

Bj+s.j—,(z) =
A(1—z) +jµ+/Am

B
i.i-^

(z) +	 µm
µ^• j+1)	 ZA(j+1)
Am

Bj+i.j(Z) _ —µ(j+1)

In particular,

_'P

c-i
gc(Z) = k(z)g o(z) + E Bc.ipo.l	 (14)

JUG
Equating the right -hand sides of (11) and (14), we have:

g o(z) = jD(z)Ac_ j(z) —Ac(z)	 JBc.1(z) —D(z) Bc-i.j(z) Po..
i=o

+IBC.c - ► (z) +D(z) IPo.c-11	 (15)

•	 -10-

where:
OR I M PAGE tS
OF POOR QUALITY

D(z)
z[O\(1 —z)+cµ	 (id)

The only remaining unknowns are the po .j for Wgc — l. The equations

required to solve for these are derived as follows.

The boundary condition (7) yields the relation:

lr gi(1) = 1	 (17)
i•o

Also, the generating functions g i(z) must converge in the unit disc I z I s 1. All

poles of the generating functions lying in the unit disc must therefore be can-

ceiis-I out by corresponding zeros. The use of this condition yields further equa-

tions in the po ,j for Osisc-1 by (15) since the Leros of the generating function
a
i

are functions of the values taken by the po ,j . Note that no additional equations

can be obtained from a further invocation of (10) since the apparent additional

pole at the origin in (10) is cancelled out by a zero.

It can be shown that the above equations are sufficient to permit the com-

putation of the po ,j values. The generating functions g i(z) are therefore com-

pletely determined. By inverting them (numerically, in most instances), the

steady state probabilities f pjj j can be obtained.

Recall that the above analysis is for c>1. For the case when c=1, we have:

ZAma (z) — kµm
g°(z)

= za(z)ar,(z) — µµ,y Po.o

and

g I(z) = a (z)

go Z) — Il Po.o

JA

where

a(z) = X(1—z) + µ

am(z) _ X(1—z) + µm

and

i	 -11
ML PAN N

Po.o = 1 — 1
14} ixLM I

	
OF POOR QUALITY

Remark: The dispatcher queue in physical implementations is clearly finite. By

making it sufficiently lerge, say N, however, it may be con sidered eftective'ty

infinite with probability ^ t pia.
i•o ino

3.3. Teak-Oriented Yodel

In this model, we employ an arttfic tat server to account for blocking delay.

This yields an approximate solution for the response time distribution. This

solution gives an upper bound for the true response time distribution, so that

we err on the side of safety.

An incoming task views the system es expressed in Figure 4. With a proba-

bility a. it is blocked. The blocking is expressed in terms of an artificial server,

to which the incoming task branches it it finds the system blocked, i.e., the ser-

vice rate distribution of the artificial server is the same as the departure rate

distribution for the tasks executing on the processors. When the service rate at.

the processors is exponentially distributed, the artificial server also has an

exponential service rate distribution.

Implicit in this analysis is the assumption that steady-state exists at all

times. This is patently not true. In most cases -- considering that controllers of

this type are generally lightly loaded -- the probability of blocking is very small.

However, once a blocking cycle begins, the probability of its continuing is

greater than a for obvious reasons. Even so, it is unlikely that steady -state in

either the Olocki 1g or nonblocking mode will be established perfectly. This is

especially the case when the input intensity is neither very low nor near to driv-

ing the system into saturation. When in thi-e intermediate range, one would

expect the system to switch from the blocked to the unblocked state and vice

77

q

vice rate, p,,,.

It is easy to see that

a	 pi.j
i^ jsc

and

ORIGINAL PAGE I
OF POOR QUALtTV

12-

versa with a fairly high frequency. Hence, any model that is based on the

steady-steady state assumption would be expected to provide less accurate

results in the intermediate range of input intensity than in the extreme ranges.

(Indeed, the relative accuracy between analytical results at two different inten-

sities might be used to obtain some indication of the frequency with which the

system switches from the blocked to the unblocked state).

If we assume that steady-state exists at all times, the problem lends itself

to a particularly simple solution and we obtain an upper bound to the true solu-

tion. It will be shown by simulation that this upper bound is good.

Under the assumption of steady-state, the system may be regarded as the

queueing network shown in Figure 4. The artificial server represents the block-

ing delay. Notice that unlike in most analyses, incoming tasks have to wait in

line to be served by this servti-. The interpretation of this last statement is as

follows The task at s he head-of-the-line (H.O.L.) position is waiting for the first of

the tasks admitted to the system to leave sc that it can be unblocked and begin

to attempt to access the M.D. Tasks that have entered the queue. after the

H.O.L. task have this latter task as an additional impediment to entry into the

system proper. The system represented in Figure 4 follows immediately from

the above argument. Notice that under the queueing rules for this model, there

is no queueing for the processors once memory access is completed; a task is

admitted into the memory only when there is a free processor ready and waiting

for it.

It only remains for us, then, to compute the value of a and the artificial ser-

1

i

F	 -13-

µ PW	 ANAL PACE 13
Am =

i+ ft
Pia	 OF PWR QUALITY	

(19)

If &(s) is the Laplace transform of the response time distribution for the

tasks when the system has c processors functioning, we have:

Ms) =a µa +1—a Afkg •^	 (20)s+µa 	 S+Pmq S+i1

where

µa =µas—an	 (21)

.

and

µmq = µm—^

which on inversion yields the response time density function for c>0:

r,(t) = Ae µat + Be Aqt + Ce -,'t ,	 (22)

where:

aµµaµr,^q
A

= (µmq—µa) (µ—µa)

B __ µµmj1Aa—µ,.q(1—a))	
(23)

(µa —µmq) (µ—µmq)

C = µµmg[µ)]a—µ(1—a
(µa—µ)(µmg—µ)	 .

3.4. Validation

In an attempt to validate the analytical results obtained above, a multipro-

cessor with three processors was considered.

As a reference, a GPSS simulation model was developed for the system. The

input intensity was varied over a wide range and results obtained through simu-

lation compared with those obtained from analysis. In Table 1, the mean

response times from the simulation and the analysis are compared.

Throughout the range of intensities studied, the analytical and

results were acceptably close (t o within 10% in most cases). Noti

awe = [r(,'7+2)/rl)—r2((r7+1)/?7)]/e

4. Indeed, the success of such models as the central sery
lative insensitivity to this inaccuracy.

IrP

OMK+ AL PACE 13
-14 '	 Of POOR QUALITY

predicted in the preceding section, the analytical and simulation results for the

lower and higher ranges of the input intensities agree much better than those

for the intermediate region In particular, the agreement at the upper and lower

ends is better than 9%. chile that in the intermediate range deteriorates to 15%.

The most probable reason for this is that in this range 'of intensity, the system

switches frequently from the blocked to the non-blocked state and vice versa.

Steady state is therefore not achieved in the intermediate cases and one of the

assumptions inherent to the task-oriented model is thereby violated. In support

of this, note that the analytical results for this region indicate a consistentlyYt 	g`	 Y

larger mean response time than the simulation results.

3.5. Non-exponential Service Rates

While the extreme complexity of analyzing systems with blocking and gen-

eral service distributions forces the analyst to assume exponential service dis-

tributions, it is common knowledge that programs on many occasions have non-

exponential service requirements. This can be modelled by equating the mean

of the actual service time to a fictitious exponential parameter. In such

instances, the sensitivity of the model to this inaccuracy is crucial4.

We test the robustness of our model to non-exponential service rate distri-

butions by assuming those to be Weibull, which is a more general distribution

than the exponential. This distribution has the distribution function

F.e(t)=1—e-(it)". The mean is

ftwe = r((77 +1)i 7)/^

and the variance is

- 	 -15-

0 l PAQE 18where I'(•) is the gamma function.	
OF P" QUALITY

The exponential and the Rayleigh distributions are special cases of the

Weibull, obtained by setting r7=1, and rI=2, respectively. When 77<1, the variance

is greater than the mean, when r1=1, the variance equals the mean. and when

+I>1, the variance is less than the mean.

Our test for model robustness takes the form of plotting the ratio of the

mean response time when rl is 0.5 and 0.7 respectively to when r7=1 (t.e., the

exponential distribution). The mean response time stays close to the exponen-

tial value for a relatively large value of nominal input intensity. As expected, at

high intensities, there is a marked divergence from the value predicted by the

exponential distribution. However, in critical control applications, the utilization

is almost always very low to allow sufficiently broad margins of safety. Note that

the actual input intensity is greater than the nominal value which defined in Fig-

ure 6. We have performed computer simulation and obtained Figure 6,

4. Discussion

In this paper, we have presented a logical taxonomy for multiprocessor sys-

tems used in control applications, and analyzed one important class. We con-

sider here methods of extending and using this analysis.

Extension to Type lb systems with paging, although nontrivial, is not diffi-

cult. One would have here three classes of jobs: one in front of, or being served

by, the memory-dispatcher, one undergoing service, and the third class consist-

ing of jobs either being served by the memory after receiving a portion of their

service at the processor or waiting to reaccess the processor. It is not difficult

to think of a number of different systems based on variations of the above basic

theme. For instance, one might obtain new models based on assigning priorities

to the tasks. In all these cases, the artificial server approach can be used to

4

Also, the reader should bear in mind that we have analyzed a logical family

of computer systems. This analysis is therefore valid for a wide range of physical

implementations.

The response time distribution, once obtained, can be used in a number of

ways. As already mentioned, we showed in [2] how response time distributions

together with a probabilistic model of the computer and a full mathematical

description of the control application can be processed to provide rigorous and

objective means for evaluating the performance of a multiprocessor system in

the contest of its application.

Tradeoffs can also be studied and the multiprocessor system refined

thereby. For example, one might consider trading off processor number against

processor power[7].

5. References

[1] "A Distributed Microprocessor System for Con-
trolling and Managing Fighter Aircraft", Proc. Distributed Data Acquisition, Com-
puting, and Control Symposium., Miami Beach, FL., December 1980, pp. 156-166.

[2] "Performance Measures for Multiprocessor Con-
trollers," Performance '83: Ninth Intl Symp. on Computer Perf., Ideasurement
and Evaluation. (To be presented).

[3]. J. F. Meyer, "On Evaluating the Performability of Degrading Computer Sys-
tems," IEEE Trans. Comput., Vol. C-29, No. 6, pp. 501-509, June 1980.

[4]. P. Jacobson and E. D. Lazowska, "The Method of Surrogate Delays: Simul-
taneous Possession in Analytic Yodels of Computer Systems," ACM Sigmetrics
Performance Evaluation Review, Vol. 10, No. 3, pp. 165-:74, September 1981.

[5]. A. L. Hopkins , et. al, "FTMP -- A Highly Reliable Fault-Tolerant Multiproces-
sor for Aircraft," Proc. IEEE, Vol. 66, No. 10, pp. 1221-1239, October 1978.

[6]. A. A. Nilsson and T. Altiok, "Open Queueing Networks with Finite Capacity
Queues," Proc. 1981 Intl Conf. Parallel Processing, pp. 87-91, August 25-28,
1981.

[7]. P. J. B. King and I. Mitrani, "The Effect of Breakdown on the Performance of

\	 :j

s

- 17 - OMWM PAQE 11
OF POOR QUAUrt

Multiprocessor Systems Perforrnance'81: Proc. 8th Pint t Symp. Camp. Perfor-
mance Model., Meas. and 81ea1., November 1981, pp. 201-211.

[8]. S. J. Larimer and S.K. Maher, "The Continuously Reconfiguring Multiproces-
sor," NATaAGe IRD Meeting on 9hctical Airborne Cbmputing, Roros, Norway,
1981.

(9). J. H. wenseley, et. al, "SIFT -- Software Implemented Fault Tolerance," Proc.
IEEE, Vol. 66, No. 10, pp. 1240-1256, October 1978.

i
4
3

3• Authors of the first two references are intentionally left out to keep anonymity
as required in the review process but will be provided in the final form if
accepted.

Acknowledgement

The authors thank Rick Butler And Milt Holt of NASA Langley Research Center for

both technical and financial support.

Real-Time Multiprocessor
	

I \ .

Dynamic	 Static	 Partly Dynamic

Task Allocation	 Task Allocation	 & Partly Static

j
Task Allocation' 4-

No Common	 Common
Memory	 Memory

Type la	 Type lb	 Type 2	 Type 3

Figure 1	 Logical Classification of Multiprocessor

Controllers

i
i	 '

Processors

Application Software

COO Common Mass
Memory

4	 ^

QRIGW& PANE 18
OF POOR QUALITY

Tasks Triggered by Environmental Stimuli

Arrival Rate a

1
Dispatcher Queue

r

Memory Queue

` y^ +̂ter

To Output Devices

Figure 2	 A Real-Time Multiprocessor Controller

Memory-Dispatcher
Queue with Blocking

Processor;

4RIINAL PAGE N
OF POOR QUALITY

Tasks Triggered by Environmental Stimuli

Arrival Rate a

1

I '>

^V V	 V

To Output Devices

Figure 3 Approximate Model of the Real-Time Multiprocessor

Controller

Figure 4	 T^

M'
Tasks Triggered by Environmental Stimuli

Arrival Rate a

To Output Devices

—.;

—► Single Path

= > Multiple Paths

	

(j-1) u'	 (j-1) u	 (j-1) u

	

a'	 a	 a
	

a

i-1, j-1	 i, j-1	 i+l, j-1

	Um	 um	 um

	

j u 	 ju	 ju

	

a	 a	 a
	

a

j	 i,j	 i+l.j

	

um	 um	 um

	

(j +1)u	 (j +1)u	 (j+1)u

	

a	 a	 ^
	

x

i-1,j+l	 i,j+l	 i+1,j+1

	

(j +2)u	 (j+2)u	 (j+2)u

Figure 5	 State Transition Diagram

9

It	 is

r

♦ 	 4	 r	 _

F

8

P.
CIVW
LL.
O

O

Grim
ii

a
Cd

QQ

.^r
C

U.00 0.20	
NOMINAL INTENSITY	

0.80	 1.00

um	5 u

Mean Response Time when

Ratio of Means =	 Weibull Parameter = n
Mean Response Time when

Weibull Parameter - 1

Nominal Intensity 	 Mean Arrival RateNo. of Processors x U

Figure 6 System Response with Weibull

Service Distributions

•	 OMOWkL PAGE
OF pooft QUALM

Tabl*l. Comparison of Analytical and Simulation Mean Response Time

x Awlytinal RIMIA&L
2.0 73.4 n.7
4.0 76.0 72.3
6.0 79.4 73.3

80.81

.0 82.0 74.4	 -
10.0 84.9 75.6
12,0 88.0 77.2
14.0 91.3
13. 9- 25.2 83.6
18.0 99.8 86.5
20.0 105.3 92.9	 ---
22.0 112-1 98.4
24.0 120.6	

10Q.2

28.0 1,11 a t	 1914

jA = 20.0. Am =50.0, c=3

	GeneralDisclaimer.pdf
	0082A02.pdf
	0082A03.pdf
	0082A04.pdf
	0082A05.pdf
	0082A06.pdf
	0082A07.pdf
	0082A08.pdf
	0082A09.pdf
	0082A10.pdf
	0082A11.pdf
	0082A12.pdf
	0082A13.pdf
	0082A14.pdf
	0082B01.pdf
	0082B02.pdf
	0082B03.pdf
	0082B04.pdf
	0082B05.pdf
	0082B06.pdf
	0082B07.pdf
	0082B08.pdf
	0082B09.pdf
	0082B10.pdf
	0082B11.pdf
	0082B12.pdf
	0082B13.pdf

