93 research outputs found

    Adsorption and desorption of hydrogen at nonpolar GaN(1-100) surfaces: Kinetics and impact on surface vibrational and electronic properties

    Get PDF
    The adsorption of hydrogen at nonpolar GaN(1-100) surfaces and its impact on the electronic and vibrational properties is investigated using surface electron spectroscopy in combination with density functional theory (DFT) calculations. For the surface mediated dissociation of H2 and the subsequent adsorption of H, an energy barrier of 0.55 eV has to be overcome. The calculated kinetic surface phase diagram indicates that the reaction is kinetically hindered at low pressures and low temperatures. At higher temperatures ab-initio thermodynamics show, that the H-free surface is energetically favored. To validate these theoretical predictions experiments at room temperature and under ultrahigh vacuum conditions were performed. They reveal that molecular hydrogen does not dissociatively adsorb at the GaN(1-100) surface. Only activated atomic hydrogen atoms attach to the surface. At temperatures above 820 K, the attached hydrogen gets desorbed. The adsorbed hydrogen atoms saturate the dangling bonds of the gallium and nitrogen surface atoms and result in an inversion of the Ga-N surface dimer buckling. The signatures of the Ga-H and N-H vibrational modes on the H-covered surface have experimentally been identified and are in good agreement with the DFT calculations of the surface phonon modes. Both theory and experiment show that H adsorption results in a removal of occupied and unoccupied intragap electron states of the clean GaN(1-100) surface and a reduction of the surface upward band bending by 0.4 eV. The latter mechanism largely reduces surface electron depletion

    Electrical conductivity and gas-sensing properties of Mg-doped and undoped single-crystalline In2O3 thin films: Bulk vs. surface

    Get PDF
    This study aims to provide a better fundamental understanding of the gas-sensing mechanism of In2O3-based conductometric gas sensors. In contrast to typically used polycrystalline films, we study single crystalline In2O3 thin films grown by molecular beam epitaxy (MBE) as a model system with reduced complexity. Electrical conductance of these films essentially consists of two parallel contributions: the bulk of the film and the surface electron accumulation layer (SEAL). Both these contributions are varied to understand their effect on the sensor response. Conductance changes induced by UV illumination in air, which forces desorption of oxygen adatoms on the surface, give a measure of the sensor response and show that the sensor effect is only due to the SEAL contribution to overall conductance. Therefore, a strong sensitivity increase can be expected by reducing or eliminating the bulk conductivity in single crystalline films or the intra-grain conductivity in polycrystalline films. Gas-response measurements in ozone atmosphere test this approach for the real application

    Modeling the light-induced degradation (LID) in silicon due to ASi-Sii-defects

    Get PDF
    Light-induced degradation (LID) in silicon is one of the major problems that hamper the progress in silicon solar cell technology. We present a method to model the LID kinetics by a differential equation system based on the assumption of charge-state-change-induced configuration changes of the so-called ASi-Sii-defect. Assuming realistic transition rates, we solve this differential equation system under variation of some of the transition rates. It is found that the LID kinetics can in principle be modeled by this approach but care has to be taken if transition rates put into the model are directly extracted from time-dependent carrier lifetime measurements

    Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2_2O on TiO2_2(110)

    Get PDF
    Knowledge of the frontier levels' alignment prior to photo-irradiation is necessary to achieve a complete quantitative description of H2_2O photocatalysis on TiO2_2(110). Although H2_2O on rutile TiO2_2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2_2O occupied levels is still lacking. For experiment, this is due to the H2_2O levels being obscured by hybridization with TiO2_2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2_2O-TiO2_2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0G_0W_0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2_2O on TiO2_2(110). We perform this separation as a function of H2_2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2_2(110) surface, the H2_2O 3a1_1 and 1b1_1 levels are broadened into several peaks between 5 and 1 eV below the TiO2_2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2_2O adsorbed intact and dissociated on stoichiometric TiO2_2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2_2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGWGW (scQPGWGW1) to obtain the ionization potential of the H2_2O-TiO2_2(110) interface.Comment: 12 pages, 12 figures, 1 tabl

    Experimental and theoretical study of electronic and hyperfine properties of hydrogenated anatase (TiO2_2): defects interplay and thermal stability

    Full text link
    In this study we report on the results from emission 57^{57}Fe Mo¨{\"o}ssbauer Spectroscopy experiments, using dilute 57^{57}Mn implantation into pristine (TiO2_2) and hydrogenated anatase held at temperatures between 300-700 K. Results of the electronic structure and local environment are complemented with ab-initio calculations. Upon implantation both Fe2+^{2+} and Fe3+^{3+} are observed in pristine anatase, where the latter demonstrates the spin-lattice relaxation. The spectra obtained for hydrogenated anatase show no Fe3+^{3+} contribution, suggesting that hydrogen acts as a donor. Due to the low threshold, hydrogen diffuses out of the lattice. Thus showing a dynamic behavior on the time scale of the 57^{57}Fe 14.4 keV state. The surrounding oxygen vacancies favor the high-spin Fe2+^{2+} state. The sample treated at room temperature shows two distinct processes of hydrogen motion. The motion commences with the interstitial hydrogen, followed by switching to the covalently bound state. Hydrogen out-diffusion is hindered by bulk defects, which could cause both processes to overlap. Supplementary UV-Vis and electrical conductivity measurements show an improved electrical conductivity and higher optical absorption after the hydrogenation. X-ray photoelectron spectroscopy at room temperature reveals that the sample hydrogenated at 573 K shows presence of both Ti3+^{3+} and Ti2+^{2+} states. This could imply that a significant amount of oxygen vacancies and -OH bonds are present in the samples. Theory suggests that in the anatase sample implanted with Mn(Fe), probes were located near equatorial vacancies as next-nearest-neighbours, whilst a metastable hydrogen configuration is responsible for the annealing behavior

    Ionization and Solvation of CsCl Interacting with Solid Water

    No full text

    Birefringence and refractive indices of wurtzite GaN in the transparency range

    No full text
    Birefringence and anisotropic refractive indices of wurtzite GaN within the spectral range from 0.58 eV to 3.335 eV were determined combining optical retardation and spectroscopic ellipsometry measurements on a series of undoped m- and c-plane GaN bulk substrates grown by hydride vapor phase epitaxy. It is observable that the birefringence has a maximum close to the absorption edge and a weak broad minimum in near-IR range. A quantitative explanation of the whole data is given in terms of contributions to the optical response of GaN due to discrete excitons, Coulomb enhanced band-to-band optical transitions near the E(0) critical point of the band structure, high-energy optical transitions, and infrared active optical phonon modes which are different for the ordinary and extraordinary waves both in magnitude and in spectral dependence
    corecore