133 research outputs found

    Structural investigation of GaInP nanowires using X-ray diffraction

    Get PDF
    AbstractIn this work the structure of ternary GaxIn1−xP nanowires is investigated with respect to the chemical composition and homogeneity. The nanowires were grown by metal–organic vapor-phase epitaxy. For the investigation of ensemble fluctuations on several lateral length scales, X-ray diffraction reciprocal space maps have been analyzed. The data reveal a complicated varying materials composition across the sample and in the nanowires on the order of 20%. The use of modern synchrotron sources, where beam-sizes in the order of several 10μm are available, enables us to investigate compositional gradients along the sample by recording diffraction patterns at different positions. In addition, compositional variations were found also within single nanowires in X-ray energy dispersive spectroscopy measurements

    Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

    Get PDF
    Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II–VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Neel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets

    Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor

    Full text link
    The anomalous Hall effect, commonly observed in metallic magnets, has been established to originate from the time-reversal symmetry breaking by an internal macroscopic magnetization in ferromagnets or by a non-collinear magnetic order. Here we observe a spontaneous anomalous Hall signal in the absence of an external magnetic field in an epitaxial film of MnTe, which is a semiconductor with a collinear antiparallel magnetic ordering of Mn moments and a vanishing net magnetization. The anomalous Hall effect arises from an unconventional phase with strong time-reversal symmetry breaking and alternating spin polarization in real-space crystal structure and momentum-space electronic structure. The anisotropic crystal environment of magnetic Mn atoms due to the non-magnetic Te atoms is essential for establishing the unconventional phase and generating the anomalous Hall effect.Comment: 34 pages, 14 figure

    Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility

    Get PDF
    Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III–V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets

    Magnetic anisotropy in antiferromagnetic hexagonal MnTe

    Get PDF
    Antiferromagnetic hexagonal MnTe is a promising material for spintronic devices relying on the control of antiferromagnetic domain orientations. Here we report on neutron diffraction, magnetotransport, and magnetometry experiments on semiconducting epitaxial MnTe thin films together with density functional theory (DFT) calculations of the magnetic anisotropies. The easy axes of the magnetic moments within the hexagonal basal plane are determined to be along ⟨1¯100⟩ directions. The spin-flop transition and concomitant repopulation of domains in strong magnetic fields is observed. Using epitaxially induced strain the onset of the spin-flop transition changes from ∼2 to ∼0.5 T for films grown on InP and SrF2 substrates, respectively

    Altermagnetic lifting of Kramers spin degeneracy

    Full text link
    Lifted Kramers spin-degeneracy has been among the central topics of condensed-matter physics since the dawn of the band theory of solids. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology to topological quantum matter. Traditionally, lifted Kramers spin-degeneracy has been considered to originate from two possible internal symmetry-breaking mechanisms. The first one refers to time-reversal symmetry breaking by magnetization of ferromagnets, and tends to be strong due to the non-relativistic exchange-coupling origin. The second mechanism applies to crystals with broken inversion symmetry, and tends to be comparatively weaker as it originates from the relativistic spin-orbit coupling. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic, that allows for lifting the Kramers spin degeneracy without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of lifted Kramers spin degeneracy generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization. Our observation of the altermagnetic lifting of the Kramers spin degeneracy can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors, that have been either identified recently or perceived for many decades as conventional antiferromagnets
    corecore