36 research outputs found

    Opioid Usage in Pregnant Women

    Get PDF
    Women have a heightened sense of health during pregnancy, especially first pregnancies. They often pay closer attention to taking medications (both over the counter and prescribed). Some discontinue smoking and choose healthier diet choices. The question or hypothesis of this research is to examine if this heightened sense of health during pregnancy has any effect on the choice to use recreational drugs during pregnancy

    Effect of COVID on Postpartum Depression (PPD)

    Get PDF
    Purpose: To determine if the rates of postpartum depression have changed during COVID To identify differences in characteristics of women with postpartum depression during COVI

    Controlled formation of Schottky diodes on n-doped ZnO layers by deposition of p-conductive polymer layers with oxidative chemical vapor deposition

    Get PDF
    We report the controlled formation of organic/inorganic Schottky diodes by depositing poly(3,4- ethylenedioxythiophene) (PEDOT) on n-doped ZnO layers using oxidative chemical vapor deposition (oCVD). Current-voltage measurements reveal the formation of Schottky diodes that show good thermal and temporal stability with rectification ratios of 10 7 and ideality factors of ∼1.2. In the frame of a Schottky model, we identify a mean barrier height at the hybrid inorganic-organic interface of 1.28 eV, which is consistent with the difference between the work function of PEDOT and the electron affinity of ZnO. The findings highlight the strength of oCVD to design high-quality hybrid PEDOT/ ZnO heterojunctions with possible applications in electronic and optoelectronic devices

    Energy Metabolites as Biomarkers in Ischemic and Dilated Cardiomyopathy

    Get PDF
    With more than 25 million people affected, heart failure (HF) is a global threat. As energy production pathways are known to play a pivotal role in HF, we sought here to identify key metabolic changes in ischemic- and non-ischemic HF by using a multi-OMICS approach. Serum metabolites and mRNAseq and epigenetic DNA methylation profiles were analyzed from blood and left ventricular heart biopsy specimens of the same individuals. In total we collected serum from n = 82 patients with Dilated Cardiomyopathy (DCM) and n = 51 controls in the screening stage. We identified several metabolites involved in glycolysis and citric acid cycle to be elevated up to 5.7-fold in DCM (p = 1.7 × 10−6 ). Interestingly, cardiac mRNA and epigenetic changes of genes encoding rate-limiting enzymes of these pathways could also be found and validated in our second stage of metabolite assessment in n = 52 DCM, n = 39 ischemic HF and n = 57 controls. In conclusion, we identified a new set of metabolomic biomarkers for HF. We were able to identify underlying biological cascades that potentially represent suitable intervention targets

    Emergence of a unique group of necrotizing mycobacterial diseases.

    Get PDF
    Although most diseases due to pathogenic mycobacteria are caused by Mycobacterium tuberculosis, several other mycobacterial diseases-caused by M. ulcerans (Buruli ulcer), M. marinum, and M. haemophilum-have begun to emerge. We review the emergence of diseases caused by these three pathogens in the United States and around the world in the last decade. We examine the pathophysiologic similarities of the diseases (all three cause necrotizing skin lesions) and common reservoirs of infection (stagnant or slow-flowing water). Examination of the histologic and pathogenic characteristics of these mycobacteria suggests differences in the modes of transmission and pathogenesis, though no singular mechanism for either characteristic has been definitively described for any of these mycobacteria

    Combining vaccination and postexposure CpG therapy provides optimal protection against lethal sepsis in a biodefense model of human melioidosis.

    No full text
    The Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a major cause of lethal sepsis and morbidity in endemic areas of Southeast Asia and a potential bioterrorism threat. We have used susceptible BALB/c mice to evaluate the potential of targeting vaccination and generic immunotherapy to the lung for optimal protection against respiratory challenge. Intranasal vaccination with live attenuated B. pseudomallei increased survival and induced interferon-γ-secreting T cells in the lung. Intranasal delivery of CpG oligodeoxynucleotides also provided significant protection; however, combining preexposure vaccination with CpG treatment at the time of infection or up to 18 hours after infection, provided significantly greater protection than either treatment alone. This combination prolonged survival, decreased bacterial loads by >1000-fold, and delayed the onset of sepsis. This novel approach may be applicable to other potential biodefense agents for which existing countermeasures are not fully effective

    Controlled formation of Schottky diodes on n-doped ZnO layers by deposition of p-conductive polymer layers with oxidative chemical vapor deposition

    No full text
    We report the controlled formation of organic/inorganic Schottky diodes by depositing poly(3,4- ethylenedioxythiophene) (PEDOT) on n-doped ZnO layers using oxidative chemical vapor deposition (oCVD). Current-voltage measurements reveal the formation of Schottky diodes that show good thermal and temporal stability with rectification ratios of 10 7 and ideality factors of ∼1.2. In the frame of a Schottky model, we identify a mean barrier height at the hybrid inorganic-organic interface of 1.28 eV, which is consistent with the difference between the work function of PEDOT and the electron affinity of ZnO. The findings highlight the strength of oCVD to design high-quality hybrid PEDOT/ ZnO heterojunctions with possible applications in electronic and optoelectronic devices

    Controlled formation of Schottky diodes on n-doped ZnO layers by deposition of p-conductive polymer layers with oxidative chemical vapor deposition

    No full text
    We report the controlled formation of organic/inorganic Schottky diodes by depositing poly(3,4- ethylenedioxythiophene) (PEDOT) on n-doped ZnO layers using oxidative chemical vapor deposition (oCVD). Current-voltage measurements reveal the formation of Schottky diodes that show good thermal and temporal stability with rectification ratios of 10 7 and ideality factors of ∼1.2. In the frame of a Schottky model, we identify a mean barrier height at the hybrid inorganic-organic interface of 1.28 eV, which is consistent with the difference between the work function of PEDOT and the electron affinity of ZnO. The findings highlight the strength of oCVD to design high-quality hybrid PEDOT/ ZnO heterojunctions with possible applications in electronic and optoelectronic devices
    corecore