24 research outputs found

    Assessment of the Noise Reduction Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project

    Get PDF
    Aircraft system noise is predicted for a portfolio of NASA advanced concepts with 2025 entry-into-service technology assumptions. The subsonic transport concepts include tube-and-wing configurations with engines mounted under the wing, over the wing nacelle integration, and a double deck fuselage with engines at a mid-fuselage location. Also included are hybrid wing body aircraft with engines upstream of the fuselage trailing edge. Both advanced direct drive engines and geared turbofan engines are modeled. Recent acoustic experimental information was utilized in the prediction for several key technologies. The 301-passenger class hybrid wing body with geared ultra high bypass engines is assessed at 40.3 EPNLdB cumulative below the Stage 4 certification level. Other hybrid wing body and unconventional tube-and-wing configurations reach levels of 33 EPNLdB or more below the certification level. Many factors contribute to the system level result; however, the hybrid wing body in the 301-passenger class, as compared to a tubeand- wing with conventional engine under wing installation, has 11.9 EPNLdB of noise reduction due to replacing reflection with acoustic shielding of engine noise sources. Therefore, the propulsion airframe aeroacoustic interaction effects clearly differentiate the unconventional configurations that approach levels close to or exceed the 42 EPNLdB goal

    Simple kinetic numerical model based on rheometer data for Ethylene–Propylene–Diene Monomer accelerated sulfur crosslinking

    No full text
    A simple numerical model for the interpretation of the reaction kinetics in ethylene–propylene–diene monomer (EPDM) vulcanized with accelerated sulfur is presented. The model is based on the assumption that during vulcanization, a number of partial reactions occurs, both in series and in parallel, which determine the formation of intermediate compounds, including activated and matured polymers. Once written a standard first-order differential equation (DIFF-EQ) for each partial reaction, an ordinary DIFF-EQ system (ODEs), was obtained and solved through Runge–Kutta algorithms. Alternatively and more efficiently, a single second-order nonhomogenous DIFF-EQ with constant coefficients was deduced, for which a closed-form solution was derived, provided that the nonhomogenous term was approximated with an exponential function. Kinetic constants were evaluated through experimental data fitting on standard rheometer tests. To assess model predictions, an experimental campaign at different temperatures on two EPDM compounds was performed. They exhibited moderate reversion at intermediate and high curing temperatures. A nonlinear least-squares fitting was performed to evaluate unknown constants entering into the DIFF-EQ model proposed. Scaled rheometer curves fit rather well, also in the presence of reversion. In addition, partial reaction kinetic constants were provided: this gave an interesting insight into the different reticulation processes occurring during vulcanization

    Influence of zinc oxide during different stages of sulfur vulcanization. Elucidated by model compound studies

    Get PDF
    The addition of zinc oxide (ZnO) as an activator for the sulfur vulcanization of rubbers enhances the vulcanization efficiency and vulcanizate properties and reduces the vulcanization time. The first part of this article deals with the reduction and optimization of the amount of ZnO. Two different rubbers, solution-styrene-butadiene rubber and ethylene-propylene-diene rubber, have been selected for this study. The results demonstrate that the curing and physical properties can be retained when the level of ZnO (Red Seal) is reduced to 1 or 2 phr, respectively. Of particular interest is nano-ZnO, characterized by a nanoscale particle distribution. The cure characteristics indicate that with nano-ZnO, a reduction of zinc by a factor of 10 can be obtained. In the second part, model compound vulcanization is introduced to investigate the effects of ZnO during the different stages of vulcanization. Experiments are described with two models, squalene and 2,3-dimethyl-2-butene, both with benzothiazolesulfenamide-accelerated vulcanization systems. The results demonstrate the influence of ZnO during the different stages of the vulcanization. With ZnO present, a marked decrease can be observed in the sulfur concentration during an early stage of vulcanization, along with a slight delay in the disappearance of the crosslink precursor. The crosslinked product distribution is influenced as well
    corecore