12 research outputs found
Where does Earth’s atmosphere get its energy?
The Sun is Earth’s primary source of energy. In this paper, we compare the magnitude of the Sun to all other external (to the atmosphere) energy sources. These external sources were previously identified in Sellers (1965); here, we quantify and update them. These external sources provide a total energy to the Earth that is more than 3700 times smaller than that provided by the Sun, a vast majority of which is provided by heat from the Earth’s interior. After accounting for the fact that 71% of incident solar radiation is deposited into the earth system, the Sun provides a total energy to Earth that is still more than 2600 times larger than the sum of all other external sources
Recommended from our members
Where does Earth’s atmosphere get its energy?
The Sun is Earth’s primary source of energy. In this paper, we compare the magnitude of the Sun to all other external (to the atmosphere) energy sources. These external sources were previously identified in Sellers (1965
Administration of thuroursodeoxycholic acid (TUDCA) reduces apoptosis following myocardial infarction in rat
Black bear bile has been used in traditional Chinese medicine to treat liver and eye related illnesses for centuries. A major constituent of bile is ursodeoxycholic acid (UDCA). Recent analysis of the cellular effects of UDCA and its taurine conjugate ta
Subgroup-specific structural variation across 1,000 medulloblastoma genomes.
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy
Recommended from our members
Subgroup-specific structural variation across 1,000 medulloblastoma genomes.
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy