817 research outputs found

    p53 suppresses type II endometrial carcinomas in mice and governs endometrial tumour aggressiveness in humans

    Get PDF
    Type II endometrial carcinomas are a highly aggressive group of tumour subtypes that are frequently associated with inactivation of the TP53 tumour suppressor gene. We show that mice with endometrium-specific deletion of Trp53 initially exhibited histological changes that are identical to known precursor lesions of type II endometrial carcinomas in humans and later developed carcinomas representing all type II subtypes. The mTORC1 signalling pathway was frequently activated in these precursor lesions and tumours, suggesting a genetic cooperation between this pathway and Trp53 deficiency in tumour initiation. Consistent with this idea, analyses of 521 human endometrial carcinomas identified frequent mTORC1 pathway activation in type I as well as type II endometrial carcinoma subtypes. mTORC1 pathway activation and p53 expression or mutation status each independently predicted poor patient survival. We suggest that molecular alterations in p53 and the mTORC1 pathway play different roles in the initiation of the different endometrial cancer subtypes, but that combined p53 inactivation and mTORC1 pathway activation are unifying pathogenic features among histologically diverse subtypes of late stage aggressive endometrial tumours

    Differential regulation of the attachment of KSHV infected human B cells to ECM by KSHV encoded gB and cellular alpha-V integrins

    Get PDF
    Kaposi’s sarcoma-associated herpesvirus (KSHV) has two modes replication: latent and lytic replication. Reactivation from latency is dictated, in part, by the cell cycle. Herein, we have attempted to delineate the importance of cell cycle in KSHV pathogenesis by exploring the expression pattern of cell surface receptors during different phases of the cell cycle. αV integrin expression is augmented during S phase in fibroblasts, epithelial, and KSHV infected cells. Using a Matrigel system, we pioneer the concept that KSHV infected primary effusion lymphoma (PEL) cells can attach to extracellular matrix proteins. This attachment is mediated primarily via αV integrins or virally encoded gB, and occurs preferentially in cells from S phase or cells from S phase actively supporting a lytic infection, respectively. Such an ability of infected B cells to attach to endothelial cells may also aid in the dissemination of infection. The keystone of this work is that for the first time, we describe the ability of KSHV infected B cells to preferentially use cellular (αV) or viral (gB) receptors to specifically bind cells, depending upon the stage of the cell cycle and infection. Originally published Cellular Microbiology, Vol. 10, No. 7, July 200

    microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes

    Get PDF
    The development and homeostasis of multicellular organisms relies on gene regulation within individual constituent cells. Gene regulatory circuits that increase the robustness of gene expression frequently incorporate microRNAs as post-transcriptional regulators. Computational approaches, synthetic gene circuits and observations in model organisms predict that the co-regulation of microRNAs and their target mRNAs can reduce cell-to-cell variability in the expression of target genes. However, whether microRNAs directly regulate variability of endogenous gene expression remains to be tested in mammalian cells. Here we use quantitative flow cytometry to show that microRNAs impact on cell-to-cell variability of protein expression in developing mouse thymocytes. We find two distinct mechanisms that control variation in the activation-induced expression of the microRNA target CD69. First, the expression of miR-17 and miR-20a, two members of the miR-17-92 cluster, is coregulated with the target mRNA Cd69 to form an activation-induced incoherent feed-forward loop. Another microRNA, miR-181a, acts at least in part upstream of the target mRNA Cd69 to modulate cellular responses to activation. The ability of microRNAs to render gene expression more uniform across mammalian cell populations may be important for normal development and for disease

    Preferential regulation of stably expressed genes in the human genome suggests a widespread expression buffering role of microRNAs

    Get PDF
    In this study, we comprehensively explored the stably expressed genes (SE genes) and fluctuant genes (FL genes) in the human genome by a meta-analysis of large scale microarray data. We found that these genes have distinct function distributions. miRNA targets are shown to be significantly enriched in SE genes by using propensity analysis of miRNA regulation, supporting the hypothesis that miRNAs can buffer whole genome expression fluctuation. The expression-buffering effect of miRNA is independent of the target site number within the 3'-untranslated region. In addition, we found that gene expression fluctuation is positively correlated with the number of transcription factor binding sites in the promoter region, which suggests that coordination between transcription factors and miRNAs leads to balanced responses to external perturbations

    Multimodal imaging of pancreatic beta cells in vivo by targeting transmembrane protein 27 (TMEM27)

    Get PDF
    Aims/hypothesis: Non-invasive diagnostic tools specific for pancreatic beta cells will have a profound impact on our understanding of the pathophysiology of metabolic diseases such as diabetes. The objective of this study was to use molecular imaging probes specifically targeting beta cells on human samples and animal models using state-of-the-art imaging modalities (fluorescence and PET) with preclinical and clinical perspective. Methods: We generated a monoclonal antibody, 8/9-mAb, targeting transmembrane protein 27 (TMEM27; a surface N-glycoprotein that is highly expressed on beta cells), compared its expression in human and mouse pancreas, and demonstrated beta cell-specific binding in both. In vivo imaging was performed in mice with subcutaneous insulinomas overexpressing the human TMEM27 gene, or transgenic mice with beta cell-specific hTMEM27 expression under the control of rat insulin promoter (RIP-hTMEM27-tg), using fluorescence and radioactively labelled antibody, followed by tissue ex vivo analysis and fluorescence microscopy. Results: Fluorescently labelled 8/9-mAb showed beta cell-specific staining on human and mouse pancreatic sections. Real-time PCR on islet cDNA indicated about tenfold higher expression of hTMEM27 in RIP-hTMEM27-tg mice than in humans. In vivo fluorescence and PET imaging in nude mice with insulinoma xenografts expressing hTMEM27 showed high 8/9-mAb uptake in tumours after 72h. Antibody homing was also observed in beta cells of RIP-hTMEM27-tg mice by in vivo fluorescence imaging. Ex vivo analysis of intact pancreas and fluorescence microscopy in beta cells confirmed these findings. Conclusions/interpretation: hTMEM27 constitutes an attractive target for in vivo visualisation of pancreatic beta cells. Studies in mouse insulinoma models and mice expressing hTMEM27 demonstrate the feasibility of beta cell-targeted in vivo imaging, which is attractive for preclinical investigations and holds potential in clinical diagnostic

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    miRNA_targets : a database for miRNA target predictions in coding and non-coding regions of mRNAs

    Get PDF
    AbstractMicroRNAs (miRNAs) are small non-coding RNAs that play a role in post-transcriptional regulation of gene expression in most eukaryotes. They help in fine-tuning gene expression by targeting messenger RNAs (mRNA). The interactions of miRNAs and mRNAs are sequence specific and computational tools have been developed to predict miRNA target sites on mRNAs, but miRNA research has been mainly focused on target sites within 3′ untranslated regions (UTRs) of genes. There is a need for an easily accessible repository of genome wide full length mRNA — miRNA target predictions with versatile search capabilities and visualization tools. We have created a web accessible database of miRNA target predictions for human, mouse, cow, chicken, Zebra fish, fruit fly and Caenorhabditis elegans using two different target prediction algorithms, The database has target predictions for miRNA's on 5′ UTRs, coding region and 3′ UTRs of all mRNAs. This database can be freely accessed at http://mamsap.it.deakin.edu.au/mirna_targets/

    The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs

    Get PDF
    Animal miRNAs are a large class of small regulatory RNAs that are known to directly and negatively regulate the expression of a large fraction of all protein encoding genes. The identification and characterization of miRNA targets is thus a fundamental problem in biology. miRNAs regulate target genes by binding to 3′ untranslated regions (3′UTRs) of target mRNAs, and multiple binding sites for the same miRNA in 3′UTRs can strongly enhance the degree of regulation. Recent experiments have demonstrated that a large fraction of miRNA binding sites reside in coding sequences. Overall, miRNA binding sites in coding regions were shown to mediate smaller regulation than 3′UTR binding. However, possible interactions between target sites in coding sequences and 3′UTRs have not been studied. Using transcriptomics and proteomics data of ten miRNA mis-expression experiments as well as transcriptome-wide experimentally identified miRNA target sites, we found that mRNA and protein expression of genes containing target sites both in coding regions and 3′UTRs were in general mildly but significantly more regulated than those containing target sites in 3′UTRs only. These effects were stronger for conserved target sites of length 7–8 nt in coding regions compared to non-conserved sites. Combined with our other finding that miRNA target sites in coding regions are under negative selection, our results shed light on the functional importance of miRNA targeting in coding regions

    NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis

    Get PDF
    Next-generation sequencing is now an established method in genomics, and massive amounts of sequencing data are being generated on a regular basis. Analysis of the sequencing data is typically performed by lab-specific in-house solutions, but the agreement of results from different facilities is often small. General standards for quality control, reproducibility, and documentation are missing.; We developed NGS-pipe, a flexible, transparent, and easy-to-use framework for the design of pipelines to analyze whole-exome, whole-genome, and transcriptome sequencing data. NGS-pipe facilitates the harmonization of genomic data analysis by supporting quality control, documentation, reproducibility, parallelization, and easy adaptation to other NGS experiments. https://github.com/cbg-ethz/NGS-pipe [email protected]
    corecore