76 research outputs found

    Emotional Voice Areas: Anatomic Location, Functional Properties, and Structural Connections Revealed by Combined fMRI/DTI

    Get PDF
    We determined the location, functional response profile, and structural fiber connections of auditory areas with voice- and emotion-sensitive activity using functional magnetic resonance imaging (fMRI) and diffusion tensor imaging. Bilateral regions responding to emotional voices were consistently found in the superior temporal gyrus, posterolateral to the primary auditory cortex. Event-related fMRI showed stronger responses in these areas to voices-expressing anger, sadness, joy, and relief, relative to voices with neutral prosody. Their neural responses were primarily driven by prosodic arousal, irrespective of valence. Probabilistic fiber tracking revealed direct structural connections of these "emotional voice areas” (EVA) with ipsilateral medial geniculate body, which is the major input source of early auditory cortex, as well as with the ipsilateral inferior frontal gyrus (IFG) and inferior parietal lobe (IPL). In addition, vocal emotions (compared with neutral prosody) increased the functional coupling of EVA with the ipsilateral IFG but not IPL. These results provide new insights into the neural architecture of the human voice processing system and support a crucial involvement of IFG in the recognition of vocal emotions, whereas IPL may subserve distinct auditory spatial functions, consistent with distinct anatomical substrates for the processing of "how” and "where” information within the auditory pathway

    Sensory quality of turnip greens and turnip tops grown in northwestern Spain

    Get PDF
    In Galicia (northwestern Spain), Brassica rapa var. rapa L. includes turnip greens and turnip tops as vegetable products. They are characterized by a particular sulfurous aroma, pungent flavor, and a bitter taste. In this work twelve local varieties grown as turnip greens and turnip tops were evaluated to define the sensory attributes, to relate them with secondary metabolites, and to select those sensorial traits that better describe these crops. Results showed differences in the sensory profiles of B. rapa varieties. Turnip greens were significantly differed for aroma intensity, leaf color, and salty taste, while turnip tops were for color and firmness of leaves, moistness and fibrosity in mouth, sharpness, and bitter taste. Secondary metabolites as glucosinolates in turnip greens and phenolic compounds in turnip tops were highly correlated with texture and flavor. Glucosinolates especially progoitrin (in turnip greens) and gluconapin (in turnip tops) showed correlation with bitter taste and aftertaste persistence. Correlation between sensory traits showed highest values between leaf firmness and stalk firmness (0.94**), leaf firmness and fibrosity (R=0.92**), aftertaste persistence and bitterness (R=0.91**) and between bitterness and moistness (R=-0.89**).Research supported by the Xunta de Galicia (PGIDIT06RAG40302PR) and Excma. Diputación Provincial de Pontevedra.Peer reviewe

    The Neural Correlates of Face-Voice-Integration in Social Anxiety Disorder

    Get PDF
    Faces and voices are very important sources of threat in social anxiety disorder (SAD), a common psychiatric disorder where core elements are fears of social exclusion and negative evaluation. Previous research in social anxiety evidenced increased cerebral responses to negative facial or vocal expressions and also generally increased hemodynamic responses to voices and faces. But it is unclear if also the cerebral process of face-voice-integration is altered in SAD. Applying functional magnetic resonance imaging, we investigated the correlates of the audiovisual integration of dynamic faces and voices in SAD as compared to healthy individuals. In the bilateral midsections of the superior temporal sulcus (STS) increased integration effects in SAD were observed driven by greater activation increases during audiovisual stimulation as compared to auditory stimulation. This effect was accompanied by increased functional connectivity with the visual association cortex and a more anterior position of the individual integration maxima along the STS in SAD. These findings demonstrate that the audiovisual integration of facial and vocal cues in SAD is not only systematically altered with regard to intensity and connectivity but also the individual location of the integration areas within the STS. These combined findings offer a novel perspective on the neuronal representation of social signal processing in individuals suffering from SAD

    Volume of subcortical brain regions in social anxiety disorder:mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group

    Get PDF
    There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = −0.077, pFWE = 0.037; right: d = −0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = −0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = −0.141, pFWE &lt; 0.001; right: d = −0.158, pFWE &lt; 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.</p

    Volume of subcortical brain regions in social anxiety disorder:mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group

    Get PDF
    There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = −0.077, pFWE = 0.037; right: d = −0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = −0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = −0.141, pFWE &lt; 0.001; right: d = −0.158, pFWE &lt; 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.</p

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders
    corecore