131 research outputs found

    Considering the settling of dispersed water in the water barrier when calculating the explosion-proof distance at the methane explosion in a mine

    Get PDF
    Gas dynamics equations are used to simulate the interaction of shock waves with water or rock–dust barriers. The model is enhanced with the presence of dispersed water in the flow and its settling on the walls of the working. An approach to the implementation of the method for solving the problem of the propagation of shock waves in a branched network of mine workings, considering the interaction of shock waves with water barriers has been developed. The approach is based on the use of the numerical method of S.K. Godunov. Examples of solving the problem of the propagation of shock waves from a methane explosion in simulated networks of coal mine workings with water barriers placed in them are give

    Reciprocal regulation of PKA and rac signaling

    Get PDF
    Activated G protein-coupled receptors (GPCRs) and receptor tyrosine kinases relay extracellular signals through spatial and temporal controlled kinase and GTPase entities. These enzymes are coordinated by multifunctional scaffolding proteins for precise intracellular signal processing. The cAMP-dependent protein kinase A (PKA) is the prime example for compartmentalized signal transmission downstream of distinct GPCRs. A-kinase anchoring proteins tether PKA to specific intracellular sites to ensure precision and directionality of PKA phosphorylation events. Here, we show that the Rho-GTPase Rac contains A-kinase anchoring protein properties and forms a dynamic cellular protein complex with PKA. The formation of this transient core complex depends on binary interactions with PKA subunits, cAMP levels and cellular GTP-loading accounting for bidirectional consequences on PKA and Rac downstream signaling. We show that GTP-Rac stabilizes the inactive PKA holoenzyme. However, β-adrenergic receptor-mediated activation of GTP-Rac–bound PKA routes signals to the Raf-Mek-Erk cascade, which is critically implicated in cell proliferation. We describe a further mechanism of how cAMP enhances nuclear Erk1/2 signaling: It emanates from transphosphorylation of p21-activated kinases in their evolutionary conserved kinase-activation loop through GTP-Rac compartmentalized PKA activities. Sole transphosphorylation of p21-activated kinases is not sufficient to activate Erk1/2. It requires complex formation of both kinases with GTP-Rac1 to unleash cAMP-PKA–boosted activation of Raf-Mek-Erk. Consequently GTP-Rac functions as a dual kinase-tuning scaffold that favors the PKA holoenzyme and contributes to potentiate Erk1/2 signaling. Our findings offer additional mechanistic insights how β-adrenergic receptor-controlled PKA activities enhance GTP-Rac–mediated activation of nuclear Erk1/2 signaling

    USE OF TEXTILE WASTE IN THE PRODUCTION OF MODIFIED CERAMICS

    Full text link
    The paper presents a study of the thermophysical properties of a ceramic material obtained with the addition of a carbonaceous residue from the pyrolysis of textile waste.В работе представлено исследование теплофизических свойств керамического материала, полученного с добавлением углеродистого остатка пиролиза текстильных отходов

    A rapid synthesis of nanofibrillar cellulose/polystyrene composite via ultrasonic treatment

    Get PDF
    A new method of the synthesis of nanofibrillar cellulose/polystyrene composite based on ultrasonic treatment of styrene emulsion in cellulose-water solution was elaborated. A new approach does not require additional heating and proposes a significantly faster synthesis (15 min, 45 °C) of the target composite compared to the methods described previously. A comprehensive analysis did not reveal any significant differences between mechanical, physical and biodegradable properties of the composite obtained by ultrasonic method and that one obtained by conventional thermal method, which requires much higher temperature (above 75 °C) and reaction duration (from 3 h)

    Synthetic spatially graded Rac activation drives directed cell polarization and locomotion

    Full text link
    Migrating cells possess intracellular gradients of Rho GTPases, but it is unknown whether these shallow gradients themselves can induce motility. Here we describe a new method to present cells with induced linear gradients of active, endogenous Rac without receptor activation. Gradients as low as 15% were sufficient to not only trigger cell migration up the synthetic gradient, but also to induce both cell polarization and repolarization. Response kinetics were inversely proportional to Rac gradient values, in agreement with a new mathematical model, suggesting a role for natural input gradient amplification upstream of Rac. Increases in Rac levels beyond a well-defined threshold dramatically augmented polarization and decreased sensitivity to the gradient value. The threshold was governed by initial cell polarity and PI3K activity, supporting a role for both in defining responsiveness to natural or synthetic Rac activation. Our methodology suggests a general way to investigate processes regulated by intracellular signaling gradients

    Rac1 Dynamics in the Human Opportunistic Fungal Pathogen Candida albicans

    Get PDF
    The small Rho G-protein Rac1 is highly conserved from fungi to humans, with approximately 65% overall sequence identity in Candida albicans. As observed with human Rac1, we show that C. albicans Rac1 can accumulate in the nucleus, and fluorescence recovery after photobleaching (FRAP) together with fluorescence loss in photobleaching (FLIP) studies indicate that this Rho G-protein undergoes nucleo-cytoplasmic shuttling. Analyses of different chimeras revealed that nuclear accumulation of C. albicans Rac1 requires the NLS-motifs at its carboxyl-terminus, which are blocked by prenylation of the adjacent cysteine residue. Furthermore, we show that C. albicans Rac1 dynamics, both at the plasma membrane and in the nucleus, are dependent on its activation state and in particular that the inactive form accumulates faster in the nucleus. Heterologous expression of human Rac1 in C. albicans also results in nuclear accumulation, yet accumulation is more rapid than that of C. albicans Rac1. Taken together our results indicate that Rac1 nuclear accumulation is an inherent property of this G-protein and suggest that the requirements for its nucleo-cytoplasmic shuttling are conserved from fungi to humans

    Human Mena Associates with Rac1 Small GTPase in Glioblastoma Cell Lines

    Get PDF
    Mammarian enabled (Mena), a member of the Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) family of proteins, has been implicated in cell motility through regulation of the actin cytoskeleton assembly, including lamellipodial protrusion. Rac1, a member of the Rho family GTPases, also plays a pivotal role in the formation of lamellipodia. Here we report that human Mena (hMena) colocalizes with Rac1 in lamellipodia, and using an unmixing assisted acceptor depletion fluorescence resonance energy transfer (u-adFRET) analysis that hMena associates with Rac1 in vivo in the glioblastoma cell line U251MG. Depletion of hMena by siRNA causes cells to be highly spread with the formation of lamellipodia. This cellular phenotype is canceled by introduction of a dominant negative form of Rac1. A Rac activity assay and FRET analysis showed that hMena knock-down cells increased the activation of Rac1 at the lamellipodia. These results suggest that hMena possesses properties which help to regulate the formation of lamellipodia through the modulation of the activity of Rac1

    GSK-3β is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis

    Get PDF
    Endogenous electrical fields (EFs) at corneal and skin wounds send a powerful signal that directs cell migration during wound healing. This signal therefore may serve as a fundamental regulator directing cell polarization and migration. Very little is known of the intracellular and molecular mechanisms that mediate EF-induced cell polarization and migration. Here, we report that Chinese hamster ovary (CHO) cells show robust directional polarization and migration in a physiological EF (0.3–1 V/cm) in both dissociated cell culture and monolayer culture. An EF of 0.6 V/cm completely abolished cell migration into wounds in monolayer culture. An EF of higher strength (≥1 V/cm) is an overriding guidance cue for cell migration. Application of EF induced quick phosphorylation of glycogen synthase kinase 3β (GSK-3β) which reached a peak as early as 3 min in an EF. Inhibition of protein kinase C (PKC) significantly reduced EF-induced directedness of cell migration initially (in 1–2 h). Inhibition of GSK-3β completely abolished EF-induced GA polarization and significantly inhibited the directional cell migration, but at a later time (2–3 h in an EF). Those results suggest that GSK-3β is essential for physiological EF-induced Golgi apparatus (GA) polarization and optimal electrotactic cell migration

    Minireview Current Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Antibody-Drug Conjugates: An Industry White Paper

    Get PDF
    ABSTRACT An antibody-drug conjugate (ADC) is a unique therapeutic modality composed of a highly potent drug molecule conjugated to a monoclonal antibody. As the number of ADCs in various stages of nonclinical and clinical development has been increasing, pharmaceutical companies have been exploring diverse approaches to understanding the disposition of ADCs. To identify the key absorption, distribution, metabolism, and excretion (ADME) issues worth examining when developing an ADC and to find optimal scientifically based approaches to evaluate ADC ADME, the International Consortium for Innovation and Quality in Pharmaceutical Development launched an ADC ADME working group in early 2014. This white paper contains observations from the working group and provides an initial framework on issues and approaches to consider when evaluating the ADME of ADCs
    corecore