46 research outputs found

    Giant Dipole Resonance decay of hot rotating 88Mo

    Get PDF
    An experiment focusing on study of the properties of hot rotating compound nucleus of 88Mo was performed in LNL Legnaro using 48Ti beam at energies of 300 and 600 MeV on 40Ca target. The compound nucleus was produced at the temperatures of 3 and 4.5 MeV, with angular momentum distribution with lmax > 60 Latin small letter h with stroke (i.e. exceeding the crtical angular momentum for fission). High-energy gamma rays, measured in coincidence with evaporation residues and alpha particles, were analyzed with the statistical model. The GDR parameters were obtained from the best fit to the data, which allowed investigating an evolution of the GDR width up to high temperatures. \ua9 Owned by the authors, published by EDP Sciences, 2014

    X-ray fluorescence from the element with atomic number Z = 120

    Get PDF
    Accepted for publication in Physical Review LettersAn atomic clock based on X-ray fluorescence yields has been used to estimate the mean characteristic time for fusion followed by fission in reactions 238U + 64Ni at 6.6 MeV/A. Inner shell vacancies are created during the collisions in the electronic structure of the possibly formed Z=120 compound nuclei. The filling of these vacancies accompanied by X-ray emission with energies characteristic of Z=120 can take place only if the atomic transitions occur before nuclear fission. Therefore, the X-ray yield characteristic of the united atom with 120 protons is strongly related to the fission time and to the vacancy lifetimes. K X-rays from the element with Z = 120 have been unambiguously identified from a coupled analysis of the involved nuclear reaction mechanisms and of the measured photon spectra. A minimum mean fission time τ\tau_f$ = 2.5×10−18s has been deduced for Z=120 from the measured X-ray multiplicity

    Excitation of the dynamical dipole in the charge asymmetric reaction 16O+ 116Sn

    Get PDF
    Abstract The γ -ray emission from the dynamical dipole formed in heavy-ion collisions during the process leading to fusion was measured for the N/Z asymmetric reaction 16 O + 116 Sn at beam energies of 8.1 and 15.6 MeV/nucleon. High-energy γ -rays and charged particles were measured in coincidence with the heavy recoiling residual nuclei. The data are compared with those from the N/Z symmetric reaction 64 Ni + 68 Zn at bombarding energies of 4.7 and 7.8 MeV/nucleon, leading to the same CN with the same excitation energies as calculated from kinematics. The measured yield of the high-energy γ -rays from the 16 O-induced reaction is found to exceed that of the thermalized CN and the excess yield increases with bombarding energy. The data are in rather good agreement with the predictions for the dynamical dipole emission based on the Boltzmann–Nordheim–Vlasov model. In addition, a comparison with existing data in the same mass region is performed to extract information on the dipole moment dependence

    Pre-equilibrium emission and its possible relation to α-clustering in nuclei

    Get PDF
    The study of nuclear states built on clusters bound by valence neutrons in their molecular configurations is a field of large interest. Clustering becomes particularly important at the dripline, where weakly bound systems prevail. For light nuclei, at an excitation energy close to the particle separation value, there are experimental evidences of such structure effects, but this is still not the case for heavier nuclear systems. Several theoretical efforts have been done in the development of pre-formation alpha-clustering models, but there is still a lack of experimental data capable to give a direct feedback. The search of alpha-cluster evidences in medium-mass systems is therefore a new challenge which can give new hints in this field of research

    Light Particle Emission Mechanisms in Heavy-Ion Reactions at 5-20 MeV/u

    No full text
    Light Charged Particle emission mechanisms were studied for different mass entrance channel nuclear reactions. The 300, 400, 500 MeV 64Ni + 68Zn and 130, 250 MeV 16O + 116Sn reactions were measured at the Legnaro National Laboratory using the beams from the TANDEM-ALPI acceleration system. Light Charged Particles were measured in coincidence with Evaporation Residues and their spectra were analyzed using the global moving source fit technique. The characterization of different emission sources (evaporative, pre-equilibrium, break-up) is discussed. The behavior of pre-equilibrium emission as a function of projectile energy, excitation energy and mass-asymmetry in the entrance channel was studied, evaluating the energy, mass and charge lost by the composite systems and using Griffin exciton model for the pre-equilibrium neutron emission. The present results are compared with the systematics of the asymmetric mass entrance channel reactions. The present work shows that also at the onset the pre-equilibrium emission depends not only on the projectile velocity but also on the reaction entrance channel mass-asymmetry. The first attempt of the particle spectra analysis using the Griffin exciton model is demonstrated for the case of proton emission in the 130 MeV 16O + 116Sn reaction

    Giant Dipole Resonance decay of hot rotating 88Mo

    No full text
    An experiment focusing on study of the properties of hot rotating compound nucleus of 88Mo was performed in LNL Legnaro using 48Ti beam at energies of 300 and 600 MeV on 40Ca target. The compound nucleus was produced at the temperatures of 3 and 4.5 MeV, with angular momentum distribution with lmax > 60 ħ (i.e. exceeding the crtical angular momentum for fission). High-energy gamma rays, measured in coincidence with evaporation residues and alpha particles, were analyzed with the statistical model. The GDR parameters were obtained from the best fit to the data, which allowed investigating an evolution of the GDR width up to high temperatures

    PRE-EQUILIBRIUM ALPHA-PARTICLE EMISSION AS A PROBE TO EXPLORE ALPHA CLUSTERING IN NUCLEI

    No full text
    Experimental data of the double-differential spectra of light particles emitted at pre- equilibrium stage of nuclear processes were obtained at Laboratori Nazionali di Legnaro for the heavy-ion reactions 130 and 250 MeV 16 O + 116 Sn. Light charged particles were measured in coincidence with evaporation residues in order to avoid unwanted competing mechanisms. The experimental data were collected in a wide angular range from 29 to 82 degrees in the laboratory system. Theoretical model was developed in order to describe simultaneously evaporative and pre-equilibrium emission of the light particles in heavy-ion reactions. Griffin exciton model was used for the description of the pre- equilibrium stage of the compound nucleus formation, while the equilibrium evaporation processes were analyzed in the framework of the statistical theory of heavy-ion reactions. Experimental data were compared with the results of the model calculations and new approach was suggested to take into account alpha cluster formation in the projectile nucleus by measuring and analyzing pre-equilibrium alpha-particle spectra

    Angular Distribution and Cross Section Measurement of the

    Get PDF
    The reaction 6Li(3He,n)8B was studied at Laboratori Nazionali di Legnaro in the framework of the EUROnu Design Study for a Beta Beam facility at CERN. The 8B production cross section was determined through neutron angular distribution by using the time-of-flight technique. Thanks to the high statistics achieved, the neutron angular distribution for the population of the 8B first excited state has been measured for the first time. Discrepancies with other available data sets for 8B ground state population are discussed and interpreted in the framework of DWBA calculations. Further measurements at beam energies above 10 MeV are needed to clarify the behaviour of the angular distributio
    corecore