40 research outputs found

    Eteokles in Spain? On Brecht’s Mein Bruder war ein Flieger

    Get PDF
    One of Bertolt Brecht’s most famous poems, Mein Bruder war ein Flieger, is often invoked as a manifesto for pacifist ideals, but some essential questions (who is the lyric I? what is the literal meaning of the poem?) have hardly received any attention. By evoking the poem’s nature as a Kinderlied, the context of its first publication, and its relationship with Brecht’s play Die Gewehre der Frau Carrar, this article tentatively identifies the source of its final pointe in a famous passage of Aeschylus’ Seven against Thebes, thereby suggesting—on the basis of textual comparisons—an example of far-reaching, ideological Antikerezeption in Brecht’s oeuvre, working all the way down to his Kalendergeschichten and to his Antigone

    Impaired working speed and executive functions as frontal lobe dysfunctions in young first-degree relatives of schizophrenic patients

    Get PDF
    The aim of the investigation was to detect neuropsychological markers, such as sustained and selective attention and executive functions, which contribute to the vulnerability to schizophrenia especially in young persons. Performance was assessed in 32 siblings and children of schizophrenic patients and 32 matched controls using Wisconsin Card Sorting Test, Colour-Word-Interference-Test, Trail Making Test, and d2-Concentration-Test. The first-degree relatives showed certain impairments on all four tests, in particular, slower times on all time-limited tests. These results suggest the need for more time when completing neuropsychological tasks involving selected and focused attention, as well as cognitive flexibility, as a possible indicator of genetic vulnerability to schizophrenia

    Depletion of Human Histone H1 Variants Uncovers Specific Roles in Gene Expression and Cell Growth

    Get PDF
    At least six histone H1 variants exist in somatic mammalian cells that bind to the linker DNA and stabilize the nucleosome particle contributing to higher order chromatin compaction. In addition, H1 seems to be actively involved in the regulation of gene expression. However, it is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible shRNA-mediated knock-down of each of the H1 variants in a human breast cancer cell line. Rapid inhibition of each H1 variant was not compensated for by changes of expression of other variants. Microarray experiments have shown a different subset of genes to be altered in each H1 knock-down. Interestingly, H1.2 depletion caused specific effects such as a cell cycle G1-phase arrest, the repressed expression of a number of cell cycle genes, and decreased global nucleosome spacing. On its side, H1.4 depletion caused cell death in T47D cells, providing the first evidence of the essential role of an H1 variant for survival in a human cell type. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants, supporting the theory that distinct roles exist for the linker histone variants

    A Close Eye on the Eagle-Eyed Visual Acuity Hypothesis of Autism

    Get PDF
    Autism spectrum disorders (ASD) have been associated with sensory hypersensitivity. A recent study reported visual acuity (VA) in ASD in the region reported for birds of prey. The validity of the results was subsequently doubted. This study examined VA in 34 individuals with ASD, 16 with schizophrenia (SCH), and 26 typically developing (TYP). Participants with ASD did not show higher VA than those with SCH and TYP. There were no substantial correlations of VA with clinical severity in ASD or SCH. This study could not confirm the eagle-eyed acuity hypothesis of ASD, or find evidence for a connection of VA and clinical phenotypes. Research needs to further address the origins and circumstances associated with altered sensory or perceptual processing in ASD

    Chromatin Structure Following UV-Induced DNA Damage—Repair or Death?

    Get PDF
    In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation. Ultraviolet (UV) radiation damage causes destabilisation of chromatin integrity. UV irradiation induces DNA damage such as photolesions and subjects the chromatin to substantial rearrangements, causing the arrest of transcription forks and cell cycle arrest. Highly conserved processes known as nucleotide and base excision repair (NER and BER) then begin to repair these lesions. However, if DNA repair fails, the cell may be forced into apoptosis. The modification of various histones as well as nucleosome remodelling via ATP-dependent chromatin remodelling complexes are required not only to repair these UV-induced DNA lesions, but also for apoptosis signalling. Histone modifications and nucleosome remodelling in response to UV also lead to the recruitment of various repair and pro-apoptotic proteins. Thus, the way in which a cell responds to UV irradiation via these modifications is important in determining its fate. Failure of these DNA damage response steps can lead to cellular proliferation and oncogenic development, causing skin cancer, hence these chromatin changes are critical for a proper response to UV-induced injury

    Simple bead assay for detection of live bacteria (Escherichia coli)

    No full text
    Bead assays are an important rapid microbial detection technology suitable for extremely low pathogen levels. We report a bead assay for rRNA extracted from Escherichia coli K12 that does not require amplification steps and has readout on an Agilent 2100 Bioanalyzer flow cytometry system. Our assay was able to detect 125 ng of RNA, which is 16 times less than reported earlier. The specificity was extremely high, with no binding to a negative control organism (Bacillus subtilis). We discuss challenges faced during optimization of the key assay components, such as varying amounts of RNA in the samples, number of beads, aggregation, and reproducibility.5 page(s

    Detection of specific strains of viable bacterial pathogens by using RNA bead assays and flow cytometry with 2100 Bioanalyzer

    No full text
    Bead assays are an emerging microbial detection technology with the capability for rapid detection of extremely low levels of viable pathogens. Such technologies are of high value in clinical settings and in the food industry. Here, we perform a bead assay for extracted 16S rRNA from Escherichia coli (strain K12) with the flow cytometry readout on a 2100 Bioanalyzer, a highly accurate, small-scale flow cytometer system.10 page(s
    corecore