85 research outputs found
Structural design of a universal mechanism for lifting squeezers
42 str., 3 s. příl. :il., tab., grafy, výkresy +sam. příloha +CD ROMPráce se zabývá popisem univerzálního mačkadla na sklo a hlavně inovace části pro zdvih univerzálního mačkadla. V práci je proveden silový rozbor v současné době používané konstrukce. Hlavní část práce se zabývá návrhem nového řešení mechanismu pro zdvih univerzálního mačkadla. Podmínkou je, aby návrh nového zařízení splňoval výstupních parametry původního zařízení, provedení silového rozboru a porovnaní se stávajícím stavem. Výsledkem prá-ce je nový návrh univerzálního mačkadla na sklo a jeho zhodnocení. Samotná analýza je provedena v programu Pro/Engineer, v nadstavbě MECHANISM
Design of the device for removing of fibre waste on spinning machines
63 stran, 6 stran příloh :ilustrace +1 CD-ROMPráce je zaměřena na systém odvodu vlákenného odpadu u dopřádacích strojů. Zabývá se analýzou a popisem známých způsobů odvodu vlákenného odpadu u dopřádacích strojů. Na základě provedené patentové rešerše jsou v práci popsány a zhodnoceny nové koncepty odvodu vlákenného odpadu do kontejneru mimo filtrační skříň stroje. Vlast-nosti vlákenného odpadu při pěchování byly ověřeny experimentálně. Na základě vý-sledků patentové rešerše a výsledků měření vlastností vlákenného odpadu bylo navrženo vhodné konstrukční řešení. Toto řešení bylo zpracováno do konstrukčního návrhu pro výrobu funkčního modelu a ověření funkčnosti na tryskovém dopřádacím stroji J20
Annihilation of low energy antiprotons in silicon
The goal of the AEIS experiment at the Antiproton
Decelerator (AD) at CERN, is to measure directly the Earth's gravitational
acceleration on antimatter. To achieve this goal, the AEIS
collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a
velocity of a few 100 m/s and measure the magnitude of the vertical deflection
of the beam from a straight path. The final position of the falling
antihydrogen will be detected by a position sensitive detector. This detector
will consist of an active silicon part, where the annihilations take place,
followed by an emulsion part. Together, they allow to achieve 1 precision on
the measurement of with about 600 reconstructed and time tagged
annihilations.
We present here, to the best of our knowledge, the first direct measurement
of antiproton annihilation in a segmented silicon sensor, the first step
towards designing a position sensitive silicon detector for the
AEIS experiment. We also present a first comparison with
Monte Carlo simulations (GEANT4) for antiproton energies below 5 MeVComment: 21 pages in total, 29 figures, 3 table
Prospects for measuring the gravitational free-fall of antihydrogen with emulsion detectors
The main goal of the AEgIS experiment at CERN is to test the weak equivalence
principle for antimatter. AEgIS will measure the free-fall of an antihydrogen
beam traversing a moir\'e deflectometer. The goal is to determine the
gravitational acceleration g for antihydrogen with an initial relative accuracy
of 1% by using an emulsion detector combined with a silicon micro-strip
detector to measure the time of flight. Nuclear emulsions can measure the
annihilation vertex of antihydrogen atoms with a precision of about 1 - 2
microns r.m.s. We present here results for emulsion detectors operated in
vacuum using low energy antiprotons from the CERN antiproton decelerator. We
compare with Monte Carlo simulations, and discuss the impact on the AEgIS
project.Comment: 20 pages, 16 figures, 3 table
The AEgIS experiment at CERN: Measuring antihydrogen free-fall in earth's gravitational field to test WEP with antimatter
The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is designed with the objective to test the weak equivalence principle with antimatter by studying the free fall of antihydrogen in the Earth's gravitational field. A pulsed cold beam of antihydrogen will be produced by charge exchange between cold Ps excited in Rydberg state and cold antiprotons. Finally the free fall will be measured by a classical moir\ue9 deflectometer. The apparatus being assembled at the Antiproton Decelerator at CERN will be described, then the advancements of the experiment will be reported: positrons and antiprotons trapping measurements, Ps two-step excitation and a test-measurement of antiprotons deflection with a small scale moir\ue9 deflectometer
AEg̅IS latest results
The validity of the Weak Equivalence Principle (WEP) as predicted by General Relativity has been tested up to astounding precision using ordinary matter. The lack hitherto of a stable source of a probe being at the same time electrically neutral, cold and stable enough to be measured has prevented highaccuracy testing of the WEP on anti-matter. The AEg̅IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment located at CERN's AD (Antiproton Decelerator) facility aims at producing such a probe in the form of a pulsed beam of cold anti-hydrogen, and at measuring by means of a moiré deflectometer the gravitational force that Earth's mass exerts on it. Low temperature and abundance of the H̅ are paramount to attain a high precision measurement. A technique employing a charge-exchange reaction between antiprotons coming from the AD and excited positronium atoms is being developed at AEg̅IS and will be presented hereafter, alongside an overview of the experimental apparatus and the current status of the experimen
Measuring the free fall of antihydrogen
After the first production of cold antihydrogen by the ATHENA and ATRAP experiments ten years ago, new second-generation experiments are aimed at measuring the fundamental properties of this anti-atom. The goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is to test the weak equivalence principle by studying the gravitational interaction between matter and antimatter with a pulsed, cold antihydrogen beam. The experiment is currently being assembled at CERN's Antiproton Decelerator. In AEGIS, antihydrogen will be produced by charge exchange of cold antiprotons with positronium excited to a high Rydberg state (n > 20). An antihydrogen beam will be produced by controlled acceleration in an electric-field gradient (Stark acceleration). The deflection of the horizontal beam due to its free fall in the gravitational field of the earth will be measured with a moire deflectometer. Initially, the gravitational acceleration will be determined to a precision of 1%, requiring the detection of about 105 antihydrogen atoms. In this paper, after a general description, the present status of the experiment will be reviewed
- …