674 research outputs found

    The genus Maera (Crustacea: Amphipoda: Melitidae) from Bermuda

    Get PDF
    Traditionally,the Bermudian amphipod fauna has included three species of Maera. After examining collections that span more than 10 years, we retain one species, M. tinkerensis; report a second species, M. quadrimana, as a verified record for the Atlantic; and describe four new species: M. ceres, M. miranda, M. ariel, and M. caliban. Discussion of M. quadrimana sensu lato, M. pacifica and M. rathbunae clarifies their taxonomic status and their relationship to the Bermudian fauna. Maera tinkerensis resides within the grossimana complex of species, and the other five species reside within the quadrimana complex. The zoogeographical implications of these morphological complex alignments are briefly considered. We provide data on habitat preferences and a key to the six species of Maera now recognized from Bermuda

    The Optical Transient Search in the Bamberg Southern Sky Survey: Preliminary Results

    Get PDF
    A large fraction of gamma-ray bursts temporarily emit optical light, i.e. optical afterglows and optical transients. So far, optical transients have only been detected after related gamma-ray satellite detection. However, taking into account their optical magnitudes at maximum light, these objects should be detectable in various historical and recent optical surveys, including the photographic sky patrol. Here we report on an extended study based on blink-comparison of 5004 Bamberg Observatory Southern Sky Patrol Plates performed within a student high school project (Jugend Forscht)

    Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study

    Get PDF
    © 2019 Nationally Determined Contributions (NDCs) submitted so far under the Paris Agreement are not in line with its long-term temperature goal. To bridge this gap, countries are required to provide regular updates and enhancements of their long-term targets and strategies, based on scientific assessments. The goal of this paper is to demonstrate a policy-support approach for evaluating NDCs and guiding enhanced ambition. The approach rests on deriving national targets in line with the Paris Agreement by downscaling regional results of Integrated Assessment Models (IAMs) to the country level. The method of downscaling relies on a reduced complexity IAM: SIAMESE (Simplified Integrated Assessment Model with Energy System Emulator). We apply the approach to an EU28 member state – Finland – with the aim of providing useful insights for policy makers to consider cost-effective mitigation options. Results over the historical period confirm that our approach is valid when national policies are similar to those across the larger IAM region, but must include country-specific circumstances. Strengths and limitations of the approach are discussed. We assess the remaining carbon budget and analyse the different implications of 2 °C and 1.5 °C global warming limits for the emissions pathway and energy mix in Finland over the 21st century

    The impact of climate change on incomes and convergence in Africa

    Get PDF
    © 2019 Elsevier Ltd Climate change is projected to detrimentally affect African countries’ economic development, while income inequalities across economies is among the highest on the planet. However, it is projected that income levels would converge on the continent. Hitherto there is limited evidence on how climate change could affect projected income convergence, accelerating, slowing down, or even reversing this process. Here, we analyze convergence considering climate-change damages, by employing an economic model embedding the three dimensions of risks at the country-level: exposure, vulnerability and hazards. The results show (1) with historical mean climate-induced losses between 10 and 15 percent of GDP per capita growth, the majority of African economies are poorly adapted to their current climatic conditions, (2) Western and Eastern African countries are projected to be the most affected countries on the continent and (3) As a consequence of these heightened impacts on a number of countries, inequalities between countries are projected to widen in the high warming scenario compared to inequalities in the low and without warming scenarios. To mitigate the impacts of economic development and inequalities across countries, we stress (1) the importance of mitigation ambition and Africa's leadership in keeping global mean temperature increase below 1.5 °C, (2) the need to address the current adaptation deficit as soon as possible, (3) the necessity to integrate quantitatively climate risks in economic and development planning and finally (4) we advocate for the generalization of a special treatment for the most vulnerable countries to access climate-related finance. The analysis raises issues on the ability of African countries to reach their SDGs targets and the potential increasing risk of instability, migration across African countries, of decreased trade and economic cooperation opportunities as a consequence of climate change – exacerbating its negative consequences

    Neuromorphometric characterization with shape functionals

    Full text link
    This work presents a procedure to extract morphological information from neuronal cells based on the variation of shape functionals as the cell geometry undergoes a dilation through a wide interval of spatial scales. The targeted shapes are alpha and beta cat retinal ganglion cells, which are characterized by different ranges of dendritic field diameter. Image functionals are expected to act as descriptors of the shape, gathering relevant geometric and topological features of the complex cell form. We present a comparative study of classification performance of additive shape descriptors, namely, Minkowski functionals, and the nonadditive multiscale fractal. We found that the proposed measures perform efficiently the task of identifying the two main classes alpha and beta based solely on scale invariant information, while also providing intraclass morphological assessment

    Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation

    Get PDF
    Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency

    High precision measurement of the associated strangeness production in proton proton interactions

    Full text link
    A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatt\'e formalism and its variation in the Dalitz plot is analyzed.Comment: accepted for publication in Eur. Phys. J.

    First Model-Independent Measurement of the Spin Triplet pΛp\Lambda Scattering Length from Final State Interaction in the pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda Reaction

    Full text link
    The pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda reaction has been measured with the COSY-TOF detector at a beam momentum of 2.7GeV/c2.7\,\mathrm{GeV}/c. The polarized proton beam enables the measurement of the beam analyzing power by the asymmetry of the produced kaon (ANKA_N^{K}). This observable allows the pΛp\Lambda spin triplet scattering length to be extracted for the first time model independently from the final-state interaction in the reaction. The obtained value is at=(2.551.39+0.72stat.±0.6syst.±0.3theo.)fma_{t} = (-2.55 ^{+0.72}_{-1.39} {}_{\textrm{stat.}} \pm 0.6_{\textrm{syst.}} \pm 0.3_{\textrm{theo.}})\mathrm{fm}. This value is compatible with theoretical predictions and results from model-dependent analyses.Comment: Revised version as accepted for publication in PR
    corecore