1,258 research outputs found

    Text Entry in Immersive Head-Mounted Display-Based Virtual Reality Using Standard Keyboards

    Get PDF
    We study the performance and user experience of two popular mainstream text entry devices, desktop keyboards and touchscreen keyboards, for use in Virtual Reality (VR) applications. We discuss the limitations arising from limited visual feedback, and examine the efficiency of different strategies of use. We analyze a total of 24 hours of typing data in VR from 24 participants and find that novice users are able to retain about 60% of their typing speed on a desktop keyboard and about 40-45\% of their typing speed on a touchscreen keyboard. We also find no significant learning effects, indicating that users can transfer their typing skills fast into VR. Besides investigating baseline performances, we study the position in which keyboards and hands are rendered in space. We find that this does not adversely affect performance for desktop keyboard typing and results in a performance trade-off for touchscreen keyboard typing

    Dark matter within high surface brightness spiral galaxies

    Get PDF
    We present results from a detailed dynamical analysis of five high surface brightness, late type spirals, studied with the aim to quantify the luminous-to-dark matter ratio inside their optical radii. The galaxies' stellar light distribution and gas kinematics have been observed and compared to hydrodynamic gas simulations, which predict the 2D gas dynamics arising in response to empirical gravitational potentials, which are combinations of differing stellar disk and dark halo contributions. The gravitational potential of the stellar disk was derived from near-infrared photometry, color-corrected to constant (M/L); the dark halo was modelled by an isothermal sphere with a core. Hydrodynamic gas simulations were performed for each galaxy for a sequence of five different mass fractions of the stellar disk and for a wide range of spiral pattern speeds. These two parameters mainly determine the modelled gas distribution and kinematics. The agreement between the non-axisymmetric part of the simulated and observed gas kinematics permitted us to conclude that the galaxies with the highest rotation velocities tend to possess near-maximal stellar disks. In less massive galaxies, with v_max<200 km/s, the mass of the dark halo at least equals the stellar mass within 2-3 R_disk. The simulated gas morphology provides a powerful tool to determine the dominant spiral pattern speed. The corotation radius for all galaxies was found to be constant at R_corotation ~ 3 R_disk and encloses the strong part of the stellar spiral in all cases.Comment: 28 pages, 7 figures; to appear in the Astrophysical Journal, Vol. 586, March 200

    Bodies, technologies and action possibilities: when is an affordance?

    Get PDF
    Borrowed from ecological psychology, the concept of affordances is often said to offer the social study of technology a means of re-framing the question of what is, and what is not, ‘social’ about technological artefacts. The concept, many argue, enables us to chart a safe course between the perils of technological determinism and social constructivism. This article questions the sociological adequacy of the concept as conventionally deployed. Drawing on ethnographic work on the ways technological artefacts engage, and are engaged by, disabled bodies, we propose that the ‘affordances’ of technological objects are not reducible to their material constitution but are inextricably bound up with specific, historically situated modes of engagement and ways of life

    Compilation of extended recursion in call-by-value functional languages

    Get PDF
    This paper formalizes and proves correct a compilation scheme for mutually-recursive definitions in call-by-value functional languages. This scheme supports a wider range of recursive definitions than previous methods. We formalize our technique as a translation scheme to a lambda-calculus featuring in-place update of memory blocks, and prove the translation to be correct.Comment: 62 pages, uses pi

    Impact of measurement backaction on nuclear spin qubits in silicon

    Full text link
    Phosphorus donor nuclear spins in silicon couple weakly to the environment making them promising candidates for high-fidelity qubits. The state of a donor nuclear spin qubit can be manipulated and read out using its hyperfine interaction with the electron confined by the donor potential. Here we use a master equation-based approach to investigate how the backaction from this electron-mediated measurement affects the lifetimes of single and multi-donor qubits. We analyze this process as a function of electric and magnetic fields, and hyperfine interaction strength. Apart from single nuclear spin flips, we identify an additional measurement-related mechanism, the nuclear spin flip-flop, which is specific to multi-donor qubits. Although this flip-flop mechanism reduces qubit lifetimes, we show that it can be effectively suppressed by the hyperfine Stark shift. We show that using atomic precision donor placement and engineered Stark shift, we can minimize the measurement backaction in multi-donor qubits, achieving larger nuclear spin lifetimes than single donor qubits

    Inorganic carbon and pH dependency of Trichodesmium's photosynthetic rates.

    Get PDF
    We established the relationship between photosynthetic carbon fixation rates and pH, CO2 and HCO3- concentrations in the diazotroph Trichodesmium erythraeum IMS101. Inorganic 14C-assimilation was measured in TRIS-buffered ASW medium where the absolute and relative concentrations of CO2, pH and HCO3- were manipulated. First, we varied the total dissolved inorganic carbon concentration (TIC) (< 0 to ~ 5 mM) at constant pH, so ratios of CO2 and HCO3- remained relatively constant. Second, we varied pH (~ 8.54 to 7.52) at constant TIC, so CO2 increased whilst HCO3- declined. We found that 14C-assimilation could be described by the same function of CO2 for both approaches but showed different dependencies on HCO3- when pH was varied at constant TIC than when TIC was varied at constant pH. A numerical model of Trichodesmium's CCM showed carboxylation rates are modulated by HCO3- and pH. The decrease in Ci assimilation at low CO2, when TIC was varied, is due to HCO3- uptake limitation of the carboxylation rate. Conversely, when pH was varied, Ci assimilation declined due to a high-pH mediated increase in HCO3- and CO2 leakage rates, potentially coupled to other processes (uncharacterised within the CCM model) that restrict Ci assimilation rates under high-pH conditions

    Quantum point contact on graphite surface

    Get PDF
    The conductance through a quantum point contact created by a sharp and hard metal tip on the graphite surface has features which to our knowledge have not been encountered so far in metal contacts or in nanowires. In this paper we first investigate these features which emerge from the strongly directional bonding and electronic structure of graphite, and provide a theoretical understanding for the electronic conduction through quantum point contacts. Our study involves the molecular-dynamics simulations to reveal the variation of interlayer distances and atomic structure at the proximity of the contact that evolves by the tip pressing toward the surface. The effects of the elastic deformation on the electronic structure, state density at the Fermi level, and crystal potential are analyzed by performing self-consistent-field pseudopotential calculations within the local-density approximation. It is found that the metallicity of graphite increases under the uniaxial compressive strain perpendicular to the basal plane. The quantum point contact is modeled by a constriction with a realistic potential. The conductance is calculated by representing the current transporting states in Laue representation, and the variation of conductance with the evolution of contact is explained by taking the characteristic features of graphite into account. It is shown that the sequential puncturing of the layers characterizes the conductance.Comment: LaTeX, 11 pages, 9 figures (included), to be published in Phys. Rev. B, tentatively scheduled for 15 September 1998 (Volume 58, Number 12

    Rupture by damage accumulation in rocks

    Get PDF
    The deformation of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage and its spatial localization lead to the creation of a macroscale discontinuity, so-called "fault" in geological terms, and to the failure of the material, i.e. a dramatic decrease of the mechanical properties as strength and modulus. The damage process can be studied both statically by direct observation of thin sections and dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). Here we first review such observations concerning geological objects over scales ranging from the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties of damage structures as roughness and gouge), time (clustering, particular trends when the failure approaches) and energy domains (power-law distributions of energy release bursts). We use a numerical model based on progressive damage within an elastic interaction framework which allows us to simulate these observations. This study shows that the failure in rocks can be the result of damage accumulation

    TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma

    Get PDF
    BACKGROUND: Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS: We employed single-cell PCR to isolate a TCR specific for the Imp3 RESULTS: We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS: We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma
    corecore