2,067 research outputs found

    Zur Festigkeit emaillierter Gläser: About the Strength of Enamelled Glass

    Get PDF
    Emaillierte Scheiben finden seit sehr langer Zeit ihre Anwendung im Bauwesen als opake Fassadenpaneele in System- oder vorgehängten, hinterlüfteten Fassaden. Mit Mustern in Form von Punkten, Streifen oder Quadraten wird ein teilweiser Sonnen- beziehungsweise Blendschutz realisiert. Ebenso ist seit langem eine festigkeitsmindernde Wirkung einer solchen Bedruckung auf Glasbauteilen bekannt. Die Gründe dafür sind nicht geklärt, und es existieren mehrere Erklärungsversuche, die ihre Belastbarkeit aber noch nicht bewiesen haben. Ebenso beruhen die Normangaben zu bedruckten, vorgespannten Glasprodukten auf empirischen Untersuchungen ohne weitere wissenschaftliche Basis. Daher wird in dieser Arbeit das Ziel verfolgt, eine in der Fachliteratur genannte mögliche Ursache der Festigkeitsminderung genauer zu untersuchen. Neben einer Bewertung der bereits vorhandenen, wenigen Erklärungsversuche wird die in der Literatur geäußerte und auch durch Versuche im Rahmen von Qualitätskontrollen der Glasveredler berechtigte Annahme der Festigkeitsminderung auf Grund geänderter Temperaturverhältnisse während des Abkühlvorgangs durch die Emailleschicht besonders untersucht. Dieser Annahme wird mit spannungsoptischen Messmethoden und in Bruchversuchen nachgegangen. Mit Streulichtmessungen werden mögliche Veränderungen im Eigenspannungsverlauf über die Glasdicke quantitativ ermittelt. Mit Bruchversuchen in einem modifizierten Doppelring-Biegeversuch können dann unter Ansatz der ermittelten Vorspannung im Glas Rückschlüsse auf mögliche strukturelle Veränderungen der Glasoberfläche beziehungsweise größere Defekte geschlossen werden. Mittels numerischer Simulationen des Vorspannprozesses von bedruckten und unbedruckten Scheiben kann auch die Auswirkung verschiedener thermischer Ausdehnungskoeffizienten genauer bestimmt werden. In praktischen Versuchen kann eine solche mögliche Auswirkung nicht untersucht werden, da die Emaille als Überzugsmaterial als handelsübliches Produkt verwendet und nicht frei konfektioniert wird. Daher können nur die thermischen Ausdehnungskoeffizienten im Versuch berücksichtigt werden, die sich im handelsüblichen Produkt einstellen.:1 Problemstellung 1 1.1 Begriffsbestimmungen 3 1.1.1 Fachbegriffe zur Emaille 3 1.1.2 Festigkeitsbegriffe für Glas 5 1.2 Stand der Wissenschaft und Technik 7 1.2.1 Metallemaillierungen 7 1.2.2 Glasemaillierungen 8 1.3 Abgeleitete Fragestellungen 22 1.4 Lösungsansätze 23 2 Grundlagen der Werkstoffe 27 2.1 Viskosität 27 2.2 Spektrale Eigenschaften und Farbgebung 30 2.3 Glas 36 2.3.1 Mechanische Eigenschaften 36 2.3.2 Thermische Eigenschaften 37 2.4 Emaille / Glasfluss 45 2.4.1 Aufbau / Struktur / Zusammensetzung 45 2.4.2 Mechanische Eigenschaften 48 2.4.3 Thermische Eigenschaften 50 2.5 Emailliertes Glas 52 3 Thermische Vorspannung 56 3.1 Prinzip der thermischen Vorspannung 56 3.2 Mechanismus der thermischen Vorspannung 57 3.3 Mechanik der thermischen Vorspannung 60 3.3.1 Temperaturverlauf 61 3.3.2 Spannungsrelaxation 65 3.3.3 Strukturrelaxation 68 3.3.4 Zusammenfassung und Spannungsverlauf 71 4 Prüfungen und Prüfgeräte – Grundlagen 74 4.1 Optische Untersuchungen 74 4.1.1 Grundlagen der Spannungsoptik 74 4.1.2 Streulichtmessungen 75 4.1.3 Diskussion weiterer Verfahren 79 4.1.4 Anwendung Messgerät SCALP 81 4.1.5 Spektralmessung 86 4.2 Bruchversuche 87 4.2.1 Doppelring-Biegeversuche nach DIN EN 1288 88 4.2.2 Modifizierter Doppelring-Biegeversuch 90 4.2.3 Bestimmung der Versuchsgeometrie 93 4.3 Auswertung und Statistik 97 5 Prüfungen – Durchführung und Auswertung 100 5.1 Parameterzusammenstellung 100 5.2 Form und Art der Probekörper 103 5.3 Optische Untersuchungen 109 5.3.1 Überprüfung der bedruckten Seite 109 5.3.2 Differential-Refraktographie 109 5.3.3 Streulichtmessungen 110 5.3.4 Spektralmessung 117 5.3.5 Zusammenfassung optische Untersuchungen 119 5.4 Bruchversuche 120 5.4.1 Unbedruckte Proben 123 5.4.2 Schwarz bedruckte Proben 124 5.4.3 Weiß bedruckte Proben 126 5.4.4 Zusammenfassung Bruchversuche 127 5.5 Überlagerung Spannungsoptik und Bruchversuch 128 6 Numerische Simulationen 134 6.1 Simulation des Vorspannprozesses 134 6.1.1 Grundlagen 134 6.1.2 Numerische Modellierung 135 6.1.3 Temperaturprofil 137 6.1.4 Vorspannprozess für unbedrucktes Glas 140 6.1.5 Vorspannprozess für bedrucktes Glas 147 6.2 Parameterstudien 150 6.2.1 Auswirkung der Emailleschichtstärke 152 6.2.2 Auswirkung der Ausdehnungsdifferenz 155 6.2.3 Zusammenfassung numerische Simulation 158 7 Zusammenfassung und Ausblick 160 7.1 Zusammenfassung und Diskussion 160 7.2 Ausblick 170 8 Verzeichnisse 174 8.1 Bezeichnungen 174 8.1.1 Formelzeichen 174 8.1.2 Abkürzungen 177 8.2 Literaturverzeichnis 178 8.2.1 Allgemein über Glas und allgemeine Parameter178 8.2.2 Emaille 178 8.2.3 Vorspannung 180 8.2.4 Mechanik und Festigkeit 183 8.2.5 Bruchversuche und Statistik 184 8.2.6 Optik und Spannungsoptik 185 8.2.7 Normen und Richtlinien 186 8.3 Abbildungsverzeichnis 18

    Zur Festigkeit emaillierter Gläser: About the Strength of Enamelled Glass

    Get PDF
    Emaillierte Scheiben finden seit sehr langer Zeit ihre Anwendung im Bauwesen als opake Fassadenpaneele in System- oder vorgehängten, hinterlüfteten Fassaden. Mit Mustern in Form von Punkten, Streifen oder Quadraten wird ein teilweiser Sonnen- beziehungsweise Blendschutz realisiert. Ebenso ist seit langem eine festigkeitsmindernde Wirkung einer solchen Bedruckung auf Glasbauteilen bekannt. Die Gründe dafür sind nicht geklärt, und es existieren mehrere Erklärungsversuche, die ihre Belastbarkeit aber noch nicht bewiesen haben. Ebenso beruhen die Normangaben zu bedruckten, vorgespannten Glasprodukten auf empirischen Untersuchungen ohne weitere wissenschaftliche Basis. Daher wird in dieser Arbeit das Ziel verfolgt, eine in der Fachliteratur genannte mögliche Ursache der Festigkeitsminderung genauer zu untersuchen. Neben einer Bewertung der bereits vorhandenen, wenigen Erklärungsversuche wird die in der Literatur geäußerte und auch durch Versuche im Rahmen von Qualitätskontrollen der Glasveredler berechtigte Annahme der Festigkeitsminderung auf Grund geänderter Temperaturverhältnisse während des Abkühlvorgangs durch die Emailleschicht besonders untersucht. Dieser Annahme wird mit spannungsoptischen Messmethoden und in Bruchversuchen nachgegangen. Mit Streulichtmessungen werden mögliche Veränderungen im Eigenspannungsverlauf über die Glasdicke quantitativ ermittelt. Mit Bruchversuchen in einem modifizierten Doppelring-Biegeversuch können dann unter Ansatz der ermittelten Vorspannung im Glas Rückschlüsse auf mögliche strukturelle Veränderungen der Glasoberfläche beziehungsweise größere Defekte geschlossen werden. Mittels numerischer Simulationen des Vorspannprozesses von bedruckten und unbedruckten Scheiben kann auch die Auswirkung verschiedener thermischer Ausdehnungskoeffizienten genauer bestimmt werden. In praktischen Versuchen kann eine solche mögliche Auswirkung nicht untersucht werden, da die Emaille als Überzugsmaterial als handelsübliches Produkt verwendet und nicht frei konfektioniert wird. Daher können nur die thermischen Ausdehnungskoeffizienten im Versuch berücksichtigt werden, die sich im handelsüblichen Produkt einstellen.:1 Problemstellung 1 1.1 Begriffsbestimmungen 3 1.1.1 Fachbegriffe zur Emaille 3 1.1.2 Festigkeitsbegriffe für Glas 5 1.2 Stand der Wissenschaft und Technik 7 1.2.1 Metallemaillierungen 7 1.2.2 Glasemaillierungen 8 1.3 Abgeleitete Fragestellungen 22 1.4 Lösungsansätze 23 2 Grundlagen der Werkstoffe 27 2.1 Viskosität 27 2.2 Spektrale Eigenschaften und Farbgebung 30 2.3 Glas 36 2.3.1 Mechanische Eigenschaften 36 2.3.2 Thermische Eigenschaften 37 2.4 Emaille / Glasfluss 45 2.4.1 Aufbau / Struktur / Zusammensetzung 45 2.4.2 Mechanische Eigenschaften 48 2.4.3 Thermische Eigenschaften 50 2.5 Emailliertes Glas 52 3 Thermische Vorspannung 56 3.1 Prinzip der thermischen Vorspannung 56 3.2 Mechanismus der thermischen Vorspannung 57 3.3 Mechanik der thermischen Vorspannung 60 3.3.1 Temperaturverlauf 61 3.3.2 Spannungsrelaxation 65 3.3.3 Strukturrelaxation 68 3.3.4 Zusammenfassung und Spannungsverlauf 71 4 Prüfungen und Prüfgeräte – Grundlagen 74 4.1 Optische Untersuchungen 74 4.1.1 Grundlagen der Spannungsoptik 74 4.1.2 Streulichtmessungen 75 4.1.3 Diskussion weiterer Verfahren 79 4.1.4 Anwendung Messgerät SCALP 81 4.1.5 Spektralmessung 86 4.2 Bruchversuche 87 4.2.1 Doppelring-Biegeversuche nach DIN EN 1288 88 4.2.2 Modifizierter Doppelring-Biegeversuch 90 4.2.3 Bestimmung der Versuchsgeometrie 93 4.3 Auswertung und Statistik 97 5 Prüfungen – Durchführung und Auswertung 100 5.1 Parameterzusammenstellung 100 5.2 Form und Art der Probekörper 103 5.3 Optische Untersuchungen 109 5.3.1 Überprüfung der bedruckten Seite 109 5.3.2 Differential-Refraktographie 109 5.3.3 Streulichtmessungen 110 5.3.4 Spektralmessung 117 5.3.5 Zusammenfassung optische Untersuchungen 119 5.4 Bruchversuche 120 5.4.1 Unbedruckte Proben 123 5.4.2 Schwarz bedruckte Proben 124 5.4.3 Weiß bedruckte Proben 126 5.4.4 Zusammenfassung Bruchversuche 127 5.5 Überlagerung Spannungsoptik und Bruchversuch 128 6 Numerische Simulationen 134 6.1 Simulation des Vorspannprozesses 134 6.1.1 Grundlagen 134 6.1.2 Numerische Modellierung 135 6.1.3 Temperaturprofil 137 6.1.4 Vorspannprozess für unbedrucktes Glas 140 6.1.5 Vorspannprozess für bedrucktes Glas 147 6.2 Parameterstudien 150 6.2.1 Auswirkung der Emailleschichtstärke 152 6.2.2 Auswirkung der Ausdehnungsdifferenz 155 6.2.3 Zusammenfassung numerische Simulation 158 7 Zusammenfassung und Ausblick 160 7.1 Zusammenfassung und Diskussion 160 7.2 Ausblick 170 8 Verzeichnisse 174 8.1 Bezeichnungen 174 8.1.1 Formelzeichen 174 8.1.2 Abkürzungen 177 8.2 Literaturverzeichnis 178 8.2.1 Allgemein über Glas und allgemeine Parameter178 8.2.2 Emaille 178 8.2.3 Vorspannung 180 8.2.4 Mechanik und Festigkeit 183 8.2.5 Bruchversuche und Statistik 184 8.2.6 Optik und Spannungsoptik 185 8.2.7 Normen und Richtlinien 186 8.3 Abbildungsverzeichnis 18

    The MOSAiC ROV Program: One Year of Comprehensive Under-Ice Observations

    Get PDF
    The overarching goal of the remotely operated vehicle (ROV) operations during MOSAiC was to provide access to the underside of sea ice for a variety of interdisciplinary science objectives throughout an entire year. The M500 ROV was equipped with a large variety of sensors and operated at several sites within the MOSAiC central observatory. Despite logistical and technological challenges, over the full year we accomplished a total of ~60 days of operations with over 300 hours of scientific dive time. 3D ice bottom geometry was mapped in high resolution using an acoustic multibeam sonar covering a 300 m circle around the access hole complementing other ice mass balance measurements on transects, by autonomous systems, airborne laser scanning and from classical ablation stakes. Various camera systems enabled us to document features of sea ice growth and decay. From early March onwards, with the sun rising again, a main focus was the investigation of the spatial variability in ice optical properties. Light transmittance was measured with several hyperspectral radiometers under marked survey areas, including various ice types such as first-year ice, second-year ice, pressure ridges, and leads. Optical surveys were coordinated with surface albedo measurements, vertical snow profiles and aerial photography. The ROV also supported ecosystem research by deploying sediment traps underneath pressure ridges, sampling algal communities at the ice bottom and in ridge cavities with a suction sampler as well as the regular towed under-ice zooplankton and phytoplankton nets. Ice algal coverage was further investigated using an underwater hyperspectral imaging system, while the ROV video cameras enabled the observation of fish and seals living in ridge cavities. The ROV also carried further oceanographic sensors providing vertical and horizontal transect measurements of small-scale bio-physical water column properties such as chlorophyll content, nutrients, optical properties, temperature, salinity and dissolved oxygen. Here we present first highlights from the year-long operations: the discovery of platelet ice under Arctic winter sea ice during polar night and the extensive time series of multibeam derived ice draft maps, which allow together with airborne laser scanner data a full 3D documentation of ice geometry

    Interdisciplinary observations of the under-ice environment using a remotely operated vehicle

    Get PDF
    Improving our understanding of the climate and ecosystem of the sea-ice covered Arctic Ocean was a key objective during MOSAiC. We aimed for a better understanding of the linkages of physical and biological processes at the interface between sea ice and ocean. To enhance the quantification of these linkages, year-round observations of physical, biological, and chemical parameters are needed. We operated a remotely operated vehicle (ROV) equipped with an interdisciplinary sensor platform to simultaneously measure these parameters underneath the drifting sea ice. These observations were made synchronous in time and place enabling a description of their spatial and temporal variability. Overall, we completed more than 80 surveys covering all seasons and various sea ice and surface conditions. We focused on optical parameters, sea-ice bottom topography, and upper ocean physical and biological oceanography. In addition, visual documentation of the under-ice environment was performed, nets for zooplankton were towed, and the ROV was used for instrument deployment and maintenance. Here, we present all ROV sensor data, allowing for a comprehensive picture of the under-ice environment. We are inviting discussions on further collaboration in data analyses and usage, in particular co-location and merging with other datasets from MOSAiC and other (also future) projects

    Platelet ice under Arctic pack ice in winter

    Get PDF
    The formation of platelet ice is well known to occur under Antarctic sea ice, where subice platelet layers form from supercooled ice shelf water. In the Arctic, however, platelet ice formation has not been extensively observed, and its formation and morphology currently remain enigmatic. Here, we present the first comprehensive, long‐term in situ observations of a decimeter thick subice platelet layer under free‐drifting pack ice of the Central Arctic in winter. Observations carried out with a remotely operated underwater vehicle (ROV) during the midwinter leg of the MOSAiC drift expedition provide clear evidence of the growth of platelet ice layers from supercooled water present in the ocean mixed layer. This platelet formation takes place under all ice types present during the surveys. Oceanographic data from autonomous observing platforms lead us to the conclusion that platelet ice formation is a widespread but yet overlooked feature of Arctic winter sea ice growth

    Effectiveness of an intensive care telehealth programme to improve process quality (ERIC): a multicentre stepped wedge cluster randomised controlled trial

    Get PDF

    Zur Festigkeit emaillierter Gläser About the Strength of Enamelled Glass

    No full text
    Emaillierte Scheiben finden seit sehr langer Zeit ihre Anwendung im Bauwesen als opake Fassadenpaneele in System- oder vorgehängten, hinterlüfteten Fassaden. Mit Mustern in Form von Punkten, Streifen oder Quadraten wird ein teilweiser Sonnen- beziehungsweise Blendschutz realisiert. Ebenso ist seit langem eine festigkeitsmindernde Wirkung einer solchen Bedruckung auf Glasbauteilen bekannt. Die Gründe dafür sind nicht geklärt, und es existieren mehrere Erklärungsversuche, die ihre Belastbarkeit aber noch nicht bewiesen haben. Ebenso beruhen die Normangaben zu bedruckten, vorgespannten Glasprodukten auf empirischen Untersuchungen ohne weitere wissenschaftliche Basis. Daher wird in dieser Arbeit das Ziel verfolgt, eine in der Fachliteratur genannte mögliche Ursache der Festigkeitsminderung genauer zu untersuchen. Neben einer Bewertung der bereits vorhandenen, wenigen Erklärungsversuche wird die in der Literatur geäußerte und auch durch Versuche im Rahmen von Qualitätskontrollen der Glasveredler berechtigte Annahme der Festigkeitsminderung auf Grund geänderter Temperaturverhältnisse während des Abkühlvorgangs durch die Emailleschicht besonders untersucht. Dieser Annahme wird mit spannungsoptischen Messmethoden und in Bruchversuchen nachgegangen. Mit Streulichtmessungen werden mögliche Veränderungen im Eigenspannungsverlauf über die Glasdicke quantitativ ermittelt. Mit Bruchversuchen in einem modifizierten Doppelring-Biegeversuch können dann unter Ansatz der ermittelten Vorspannung im Glas Rückschlüsse auf mögliche strukturelle Veränderungen der Glasoberfläche beziehungsweise größere Defekte geschlossen werden. Mittels numerischer Simulationen des Vorspannprozesses von bedruckten und unbedruckten Scheiben kann auch die Auswirkung verschiedener thermischer Ausdehnungskoeffizienten genauer bestimmt werden. In praktischen Versuchen kann eine solche mögliche Auswirkung nicht untersucht werden, da die Emaille als Überzugsmaterial als handelsübliches Produkt verwendet und nicht frei konfektioniert wird. Daher können nur die thermischen Ausdehnungskoeffizienten im Versuch berücksichtigt werden, die sich im handelsüblichen Produkt einstellen.:1 Problemstellung 1 1.1 Begriffsbestimmungen 3 1.1.1 Fachbegriffe zur Emaille 3 1.1.2 Festigkeitsbegriffe für Glas 5 1.2 Stand der Wissenschaft und Technik 7 1.2.1 Metallemaillierungen 7 1.2.2 Glasemaillierungen 8 1.3 Abgeleitete Fragestellungen 22 1.4 Lösungsansätze 23 2 Grundlagen der Werkstoffe 27 2.1 Viskosität 27 2.2 Spektrale Eigenschaften und Farbgebung 30 2.3 Glas 36 2.3.1 Mechanische Eigenschaften 36 2.3.2 Thermische Eigenschaften 37 2.4 Emaille / Glasfluss 45 2.4.1 Aufbau / Struktur / Zusammensetzung 45 2.4.2 Mechanische Eigenschaften 48 2.4.3 Thermische Eigenschaften 50 2.5 Emailliertes Glas 52 3 Thermische Vorspannung 56 3.1 Prinzip der thermischen Vorspannung 56 3.2 Mechanismus der thermischen Vorspannung 57 3.3 Mechanik der thermischen Vorspannung 60 3.3.1 Temperaturverlauf 61 3.3.2 Spannungsrelaxation 65 3.3.3 Strukturrelaxation 68 3.3.4 Zusammenfassung und Spannungsverlauf 71 4 Prüfungen und Prüfgeräte – Grundlagen 74 4.1 Optische Untersuchungen 74 4.1.1 Grundlagen der Spannungsoptik 74 4.1.2 Streulichtmessungen 75 4.1.3 Diskussion weiterer Verfahren 79 4.1.4 Anwendung Messgerät SCALP 81 4.1.5 Spektralmessung 86 4.2 Bruchversuche 87 4.2.1 Doppelring-Biegeversuche nach DIN EN 1288 88 4.2.2 Modifizierter Doppelring-Biegeversuch 90 4.2.3 Bestimmung der Versuchsgeometrie 93 4.3 Auswertung und Statistik 97 5 Prüfungen – Durchführung und Auswertung 100 5.1 Parameterzusammenstellung 100 5.2 Form und Art der Probekörper 103 5.3 Optische Untersuchungen 109 5.3.1 Überprüfung der bedruckten Seite 109 5.3.2 Differential-Refraktographie 109 5.3.3 Streulichtmessungen 110 5.3.4 Spektralmessung 117 5.3.5 Zusammenfassung optische Untersuchungen 119 5.4 Bruchversuche 120 5.4.1 Unbedruckte Proben 123 5.4.2 Schwarz bedruckte Proben 124 5.4.3 Weiß bedruckte Proben 126 5.4.4 Zusammenfassung Bruchversuche 127 5.5 Überlagerung Spannungsoptik und Bruchversuch 128 6 Numerische Simulationen 134 6.1 Simulation des Vorspannprozesses 134 6.1.1 Grundlagen 134 6.1.2 Numerische Modellierung 135 6.1.3 Temperaturprofil 137 6.1.4 Vorspannprozess für unbedrucktes Glas 140 6.1.5 Vorspannprozess für bedrucktes Glas 147 6.2 Parameterstudien 150 6.2.1 Auswirkung der Emailleschichtstärke 152 6.2.2 Auswirkung der Ausdehnungsdifferenz 155 6.2.3 Zusammenfassung numerische Simulation 158 7 Zusammenfassung und Ausblick 160 7.1 Zusammenfassung und Diskussion 160 7.2 Ausblick 170 8 Verzeichnisse 174 8.1 Bezeichnungen 174 8.1.1 Formelzeichen 174 8.1.2 Abkürzungen 177 8.2 Literaturverzeichnis 178 8.2.1 Allgemein über Glas und allgemeine Parameter178 8.2.2 Emaille 178 8.2.3 Vorspannung 180 8.2.4 Mechanik und Festigkeit 183 8.2.5 Bruchversuche und Statistik 184 8.2.6 Optik und Spannungsoptik 185 8.2.7 Normen und Richtlinien 186 8.3 Abbildungsverzeichnis 18

    Face memory skill acquisition

    No full text

    Testing for individual approval of a vault roof with in-plane loades glass panes

    Full text link
    p. 2990-3001At the IASS conferences in 2007 [1] and 2008 the concept and testing results of a sustainable and transparent roof construction were presented. These transparent space grid structures base on a double layer grid in which all bars in the upper layer, the compression layer, are replaced by glass panes. The glazing is part of the primary load bearing system and transfers significant in-plane forces. In 2007 the first realisation project using this new concept was launched and will be finished this year. With a dimension of 13.5 m x 21 m and an arch rise of 3.50 m it covers the courtyard of one of the Berlin palaces. The design process was attended with extensive testing to obtain an individual approval. This contribution describes the testing at single panes and the full-scale arch of 13.5 m span necessary for the individual approval of the building authorities. Plastics for the in-plane load application into the glass edge and their creeping behaviour were investigated in first tests. The stability behaviour against glass pane buckling was tested at relevant load combinations and the post breakage robustness and the walk-on ability of the overhead glazing ensured by suitable test. Load bearing tests with a total load of 13 tons were conducted at one 13.5 m arch and finished the test series. The successfully finished testing is the basis for the individual approval and the realisation of the roof construction within the next month.Weller, B.; Reich, S.; Ebert, J.; Krampe, P. (2009). Testing for individual approval of a vault roof with in-plane loades glass panes. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/670
    corecore