26 research outputs found
The magnetic field at milliarcsecond resolution around IRAS20126+4104
IRAS20126+4104 is a well studied B0.5 protostar that is surrounded by a ~1000
au Keplerian disk and is where a large-scale outflow originates. Both 6.7-GHz
CH3OH masers and 22-GHz H2O masers have been detected toward this young stellar
object. The CH3OH masers trace the Keplerian disk, while the H2O masers are
associated with the surface of the conical jet. Recently, observations of dust
polarized emission (350 um) at an angular resolution of 9 arcseconds (~15000
au) have revealed an S-shaped morphology of the magnetic field around
IRAS20126+4104. The observations of polarized maser emissions at milliarcsecond
resolution (~20 au) can make a crucial contribution to understanding the
orientation of the magnetic field close to IRAS20126+4104. This will allow us
to determine whether the magnetic field morphology changes from arcsecond
resolution to milliarcsecond resolution. The European VLBI Network was used to
measure the linear polarization and the Zeeman splitting of the 6.7-GHz CH3OH
masers toward IRAS20126+4104. The NRAO Very Long Baseline Array was used to
measure the linear polarization and the Zeeman splitting of the 22-GHz H2O
masers toward the same region. We detected 26 CH3OH masers and 5 H2O masers at
high angular resolution. Linear polarization emission was observed toward three
CH3OH masers and toward one H2O maser. Significant Zeeman splitting was
measured in one CH3OH maser (\Delta V_{Z}=-9.2 +/- 1.4 m/s). No significant (5
sigma) magnetic field strength was measured using the H2O masers. We found that
in IRAS20126+4104 the rotational energy is less than the magnetic energy.Comment: 9 pages, 5 figures, 2 tables, accepted by Astronomy & Astrophysic
Magnetic field measurements at milliarcsecond resolution around massive young stellar objects
Magnetic fields have only recently been included in theoretical simulations
of high-mass star formation. The simulations show that magnetic fields can play
a crucial role not only in the formation and dynamics of molecular outflows,
but also in the evolution of circumstellar disks. Therefore, new measurements
of magnetic fields at milliarcsecond resolution close to massive young stellar
objects (YSOs) are fundamental for providing new input for numerical
simulations and for understanding the formation process of massive stars. The
polarized emission of 6.7 GHz CH3OH masers allows us to investigate the
magnetic field close to the massive YSO where the outflows and disks are
formed. Recently, we have detected with the EVN CH3OH maser polarized emission
towards 10 massive YSOs. From a first statistical analysis we have found
evidence that magnetic fields are primarily oriented along the molecular
outflows. To improve our statistics we are carrying on a large observational
EVN campaign for a total of 19 sources, the preliminary results of the first
seven sources are presented in this contribution. Furthermore, we also describe
our efforts to estimate the Lande' g-factors of the CH3OH maser transition to
determine the magnetic field strength from our Zeeman-splitting measurements.Comment: Accepted for publication in the proceeding of the "12th European VLBI
Network Symposium and Users Meeting", eds Tarchi et al. PoS(EVN 2014)04
EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions III. The flux-limited sample
Theoretical simulations and observations at different angular resolutions
have shown that magnetic fields have a central role in massive star formation.
Like in low-mass star formation, the magnetic field in massive young stellar
objects can either be oriented along the outflow axis or randomly. Measuring
the magnetic field at milliarcsecond resolution (10-100 au) around a
substantial number of massive young stellar objects permits determining with a
high statistical significance whether the direction of the magnetic field is
correlated with the orientation of the outflow axis or not. In late 2012, we
started a large VLBI campaign with the European VLBI Network to measure the
linearly and circularly polarized emission of 6.7 GHz methanol masers around a
sample of massive star-forming regions. This paper focuses on the first seven
observed sources, G24.78+0.08, G25.65+1.05, G29.86-0.04, G35.03+0.35,
G37.43+1.51, G174.20-0.08, and G213.70-12.6. For all these sources, molecular
outflows have been detected in the past. We detected a total of 176 methanol
masing cloudlets toward the seven massive star-forming regions, 19% of which
show linearly polarized emission. The methanol masers around the massive young
stellar object MM1 in G174.20-0.08 show neither linearly nor circularly
polarized emission. The linear polarization vectors are well ordered in all the
other massive young stellar objects. We measured significant Zeeman splitting
toward both A1 and A2 in G24.78+0.08, and toward G29.86-0.04 and G213.70-12.6.
By considering all the 19 massive young stellar objects reported in the
literature for which both the orientation of the magnetic field at
milliarcsecond resolution and the orientation of outflow axes are known, we
find evidence that the magnetic field (on scales 10-100 au) is preferentially
oriented along the outflow axes.Comment: 17 pages, 10 figures, 9 tables, accepted by Astronomy & Astrophysics.
arXiv admin note: text overlap with arXiv:1306.633
EVN observations of 6.7-GHz methanol maser polarization in massive star-forming regions II. First statistical results
Magnetic fields have only recently been included in theoretical simulations
of high-mass star formation. The simulations show that magnetic fields play an
important role in the formation and dynamics of molecular outflows. Masers, in
particular 6.7-GHz CH3OH masers, are the best probes of the magnetic field
morphologies around massive young stellar objects on the smallest scales of
10-100 AU. This paper focuses on 4 massive young stellar objects,
IRAS06058+2138-NIRS1, IRAS22272+6358A, S255-IR, and S231, which complement our
previous 2012 sample (the first EVN group). From all these sources, molecular
outflows have been detected in the past. Seven of the European VLBI Network
antennas were used to measure the linear polarization and Zeeman-splitting of
the 6.7-GHz CH3OH masers in the star-forming regions in this second EVN group.
We detected a total of 128 CH3OH masing cloudlets. Fractional linear
polarization (0.8%-11.3%) was detected towards 18% of the CH3OH masers in our
sample. The linear polarization vectors are well ordered in all the massive
young stellar objects. We measured significant Zeeman-splitting in
IRAS06058+2138-NIRS1 (DVz=3.8+/-0.6 m/s) and S255-IR (DVz=3.2+/-0.7 m/s). By
considering the 20 massive young stellar objects towards which the morphology
of magnetic fields was determined by observing 6.7-GHz CH3OH masers in both
hemispheres, we find no evident correlation between the linear distributions of
CH3OH masers and the outflows or the linear polarization vectors. On the other
hand, we present first statistical evidence that the magnetic field (on scales
10-100 AU) is primarily oriented along the large-scale outflow direction.
Moreover, we empirically find that the linear polarization fraction of
unsaturated CH3OH masers is P_l<4.5%.Comment: 13 pages, 8 figures, 7 tables, accepted by Astronomy & Astrophysic
The structure of the magnetic field in the massive star-forming region W75N
A debated topic in star formation theory is the role of magnetic fields
during the protostellar phase of high-mass stars. It is still unclear how
magnetic fields influence the formation and dynamics of massive disks and
outflows. Most current information on magnetic fields close to high-mass
protostars comes from polarized maser emissions, which allows us to investigate
the magnetic field on small scales by using very long-baseline interferometry.
The massive star-forming region W75N contains three radio continuum sources
(VLA1, VLA2, and VLA3), at three different evolutionary stages, and associated
masers, while a large-scale molecular bipolar outflow is also present. Very
recently, polarization observations of the 6.7 GHz methanol masers at
milliarsecond resolution have been able to probe the strength and structure of
the magnetic field over more than 2000 AU around VLA1. The magnetic field is
parallel to the outflow, suggesting that VLA1 is its powering source. The
observations of water masers at 22 GHz can give more information about the gas
dynamics and the magnetic fields around VLA1 and VLA2. The NRAO Very Long
Baseline Array was used to measure the linear polarization and the
Zeeman-splitting of the 22 GHz water masers in the star-forming region W75N. We
detected 124 water masers, 36 around VLA1 and 88 around VLA2 of W75N, which
indicate two different physical environments around the two sources, where VLA1
is in a more evolved state. The linear polarization of the masers confirms the
tightly ordered magnetic field around VLA1, which is aligned with the
large-scale molecular outflow, and also reveals an ordered magnetic field
around VLA2, which is not parallel to the outflow. [abridged]Comment: 11 pages, 5 figures, 2 Tables, accepted by Astronomy & Astrophysic
The properties and polarization of the H2O and CH3OH maser environment of NGC7538-IRS1
NGC7538 is a complex massive star-forming region. The region is composed of
several radio continuum sources, one of which is IRS1, a high-mass protostar,
from which a 0.3 pc molecular bipolar outflow was detected. Several maser
species have been detected around IRS1. The CH3OH masers have been suggested to
trace a Keplerian-disk, while the H2O masers are almost aligned to the outflow.
More recent results suggested that the region hosts a torus and potentially a
disk, but with a different inclination than the Keplerian-disk that is supposed
to be traced by the CH3OH masers. Tracing the magnetic field close to
protostars is fundamental for determining the orientation of the disk/torus.
Recent studies showed that during the protostellar phase of high-mass star
formation the magnetic field is oriented along the outflows and around or on
the surfaces of the disk/torus. The observations of polarized maser emissions
at milliarcsecond resolution can make a crucial contribution to understanding
the orientation of the magnetic field and, consequently, the orientation of the
disk/torus in NGC7538-IRS1. The NRAO Very Long Baseline Array was used to
measure the linear polarization and the Zeeman-splitting of the 22GHz H2O
masers toward NGC7538-IRS1. The European VLBI Network and the MERLIN telescopes
were used to measure the linear polarization and the Zeeman-splitting of the
6.7GHz CH3OH masers toward the same region. We detected 17 H2O masers and 49
CH3OH masers at high angular resolution. We detected linear polarization
emission toward two H2O masers and toward twenty CH3OH masers. The CH3OH
masers, most of which only show a core structure, seem to trace rotating and
potentially infalling gas in the inner part of a torus. Significant
Zeeman-splitting was measured in three CH3OH masers. [...] We also propose a
new description of the structure of the NGC7538-IRS1 maser region.Comment: 13 pages, 9 figures, 4 Tables, accepted by Astronomy & Astrophysic
EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions
The role of magnetic fields in the formation of high-mass stars is still
under debate, and recent measurements of their orientation and strength by
using polarized maser emissions are contributing new insights. Masers
polarization, in particular of the 6.7-GHz methanol masers, are one of the best
probes of the magnetic field morphologies around massive protostars.
Determining the magnetic field morphology around an increasing number of
massive protostars at milliarcsecond resolution by observing 6.7-GHz methanol
masers is crucial to better understand the role of magnetic fields in massive
star formation.The First EVN Group consists of 4 massive star-forming
complexes: W51, W48, IRAS18556+0138, and W3(OH). These contain well-studied
\hii ~regions from some of which molecular bipolar outflows were also detected
(W51-e2, G35.20-0.74N). Nine of the European VLBI Network antennas were used to
measure the linear polarization and Zeeman-splitting of the 6.7-GHz methanol
masers in the star-forming regions of the First EVN Group. We detected a total
of 154 CH3OH masers, one third of these towards W3(OH). Fractional linear
polarization (1.2-11.5%) was detected towards 55 masers. The linear
polarization vectors are well-ordered in all the massive star-forming regions.
We measured significant Zeeman-splitting in 3 massive star-forming regions
(W51, W48, and W3(OH)) revealing a range of separations -3.5 m/s<\Delta
V_{z}<3.8 m/s with the smallest |\Delta V_{z}|=0.4m/s. We were also able to
compare our magnetic field results with those obtained from submillimeter
wavelength dust observation in W51 and show that the magnetic field at low and
high resolutions are in perfect agreement.Comment: 15 pages, 11 figures, 5 tables, accepted by Astronomy & Astrophysic
Future mmVLBI Research with ALMA: A European vision
Very long baseline interferometry at millimetre/submillimetre wavelengths
(mmVLBI) offers the highest achievable spatial resolution at any wavelength in
astronomy. The anticipated inclusion of ALMA as a phased array into a global
VLBI network will bring unprecedented sensitivity and a transformational leap
in capabilities for mmVLBI. Building on years of pioneering efforts in the US
and Europe the ongoing ALMA Phasing Project (APP), a US-led international
collaboration with MPIfR-led European contributions, is expected to deliver a
beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al.
2013, arXiv:1309.3519).
This report focuses on the future use of mmVLBI by the international users
community from a European viewpoint. Firstly, it highlights the intense science
interest in Europe in future mmVLBI observations as compiled from the responses
to a general call to the European community for future research projects. A
wide range of research is presented that includes, amongst others:
- Imaging the event horizon of the black hole at the centre of the Galaxy
- Testing the theory of General Relativity an/or searching for alternative
theories
- Studying the origin of AGN jets and jet formation
- Cosmological evolution of galaxies and BHs, AGN feedback
- Masers in the Milky Way (in stars and star-forming regions)
- Extragalactic emission lines and astro-chemistry
- Redshifted absorption lines in distant galaxies and study of the ISM and
circumnuclear gas
- Pulsars, neutron stars, X-ray binaries
- Testing cosmology
- Testing fundamental physical constantsComment: Replaced figures 2 and 3: corrected position SRT. Corrected minor
typo in 5.