26 research outputs found

    The magnetic field at milliarcsecond resolution around IRAS20126+4104

    Get PDF
    IRAS20126+4104 is a well studied B0.5 protostar that is surrounded by a ~1000 au Keplerian disk and is where a large-scale outflow originates. Both 6.7-GHz CH3OH masers and 22-GHz H2O masers have been detected toward this young stellar object. The CH3OH masers trace the Keplerian disk, while the H2O masers are associated with the surface of the conical jet. Recently, observations of dust polarized emission (350 um) at an angular resolution of 9 arcseconds (~15000 au) have revealed an S-shaped morphology of the magnetic field around IRAS20126+4104. The observations of polarized maser emissions at milliarcsecond resolution (~20 au) can make a crucial contribution to understanding the orientation of the magnetic field close to IRAS20126+4104. This will allow us to determine whether the magnetic field morphology changes from arcsecond resolution to milliarcsecond resolution. The European VLBI Network was used to measure the linear polarization and the Zeeman splitting of the 6.7-GHz CH3OH masers toward IRAS20126+4104. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman splitting of the 22-GHz H2O masers toward the same region. We detected 26 CH3OH masers and 5 H2O masers at high angular resolution. Linear polarization emission was observed toward three CH3OH masers and toward one H2O maser. Significant Zeeman splitting was measured in one CH3OH maser (\Delta V_{Z}=-9.2 +/- 1.4 m/s). No significant (5 sigma) magnetic field strength was measured using the H2O masers. We found that in IRAS20126+4104 the rotational energy is less than the magnetic energy.Comment: 9 pages, 5 figures, 2 tables, accepted by Astronomy & Astrophysic

    Magnetic field measurements at milliarcsecond resolution around massive young stellar objects

    Full text link
    Magnetic fields have only recently been included in theoretical simulations of high-mass star formation. The simulations show that magnetic fields can play a crucial role not only in the formation and dynamics of molecular outflows, but also in the evolution of circumstellar disks. Therefore, new measurements of magnetic fields at milliarcsecond resolution close to massive young stellar objects (YSOs) are fundamental for providing new input for numerical simulations and for understanding the formation process of massive stars. The polarized emission of 6.7 GHz CH3OH masers allows us to investigate the magnetic field close to the massive YSO where the outflows and disks are formed. Recently, we have detected with the EVN CH3OH maser polarized emission towards 10 massive YSOs. From a first statistical analysis we have found evidence that magnetic fields are primarily oriented along the molecular outflows. To improve our statistics we are carrying on a large observational EVN campaign for a total of 19 sources, the preliminary results of the first seven sources are presented in this contribution. Furthermore, we also describe our efforts to estimate the Lande' g-factors of the CH3OH maser transition to determine the magnetic field strength from our Zeeman-splitting measurements.Comment: Accepted for publication in the proceeding of the "12th European VLBI Network Symposium and Users Meeting", eds Tarchi et al. PoS(EVN 2014)04

    EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions III. The flux-limited sample

    Get PDF
    Theoretical simulations and observations at different angular resolutions have shown that magnetic fields have a central role in massive star formation. Like in low-mass star formation, the magnetic field in massive young stellar objects can either be oriented along the outflow axis or randomly. Measuring the magnetic field at milliarcsecond resolution (10-100 au) around a substantial number of massive young stellar objects permits determining with a high statistical significance whether the direction of the magnetic field is correlated with the orientation of the outflow axis or not. In late 2012, we started a large VLBI campaign with the European VLBI Network to measure the linearly and circularly polarized emission of 6.7 GHz methanol masers around a sample of massive star-forming regions. This paper focuses on the first seven observed sources, G24.78+0.08, G25.65+1.05, G29.86-0.04, G35.03+0.35, G37.43+1.51, G174.20-0.08, and G213.70-12.6. For all these sources, molecular outflows have been detected in the past. We detected a total of 176 methanol masing cloudlets toward the seven massive star-forming regions, 19% of which show linearly polarized emission. The methanol masers around the massive young stellar object MM1 in G174.20-0.08 show neither linearly nor circularly polarized emission. The linear polarization vectors are well ordered in all the other massive young stellar objects. We measured significant Zeeman splitting toward both A1 and A2 in G24.78+0.08, and toward G29.86-0.04 and G213.70-12.6. By considering all the 19 massive young stellar objects reported in the literature for which both the orientation of the magnetic field at milliarcsecond resolution and the orientation of outflow axes are known, we find evidence that the magnetic field (on scales 10-100 au) is preferentially oriented along the outflow axes.Comment: 17 pages, 10 figures, 9 tables, accepted by Astronomy & Astrophysics. arXiv admin note: text overlap with arXiv:1306.633

    EVN observations of 6.7-GHz methanol maser polarization in massive star-forming regions II. First statistical results

    Get PDF
    Magnetic fields have only recently been included in theoretical simulations of high-mass star formation. The simulations show that magnetic fields play an important role in the formation and dynamics of molecular outflows. Masers, in particular 6.7-GHz CH3OH masers, are the best probes of the magnetic field morphologies around massive young stellar objects on the smallest scales of 10-100 AU. This paper focuses on 4 massive young stellar objects, IRAS06058+2138-NIRS1, IRAS22272+6358A, S255-IR, and S231, which complement our previous 2012 sample (the first EVN group). From all these sources, molecular outflows have been detected in the past. Seven of the European VLBI Network antennas were used to measure the linear polarization and Zeeman-splitting of the 6.7-GHz CH3OH masers in the star-forming regions in this second EVN group. We detected a total of 128 CH3OH masing cloudlets. Fractional linear polarization (0.8%-11.3%) was detected towards 18% of the CH3OH masers in our sample. The linear polarization vectors are well ordered in all the massive young stellar objects. We measured significant Zeeman-splitting in IRAS06058+2138-NIRS1 (DVz=3.8+/-0.6 m/s) and S255-IR (DVz=3.2+/-0.7 m/s). By considering the 20 massive young stellar objects towards which the morphology of magnetic fields was determined by observing 6.7-GHz CH3OH masers in both hemispheres, we find no evident correlation between the linear distributions of CH3OH masers and the outflows or the linear polarization vectors. On the other hand, we present first statistical evidence that the magnetic field (on scales 10-100 AU) is primarily oriented along the large-scale outflow direction. Moreover, we empirically find that the linear polarization fraction of unsaturated CH3OH masers is P_l<4.5%.Comment: 13 pages, 8 figures, 7 tables, accepted by Astronomy & Astrophysic

    The structure of the magnetic field in the massive star-forming region W75N

    Full text link
    A debated topic in star formation theory is the role of magnetic fields during the protostellar phase of high-mass stars. It is still unclear how magnetic fields influence the formation and dynamics of massive disks and outflows. Most current information on magnetic fields close to high-mass protostars comes from polarized maser emissions, which allows us to investigate the magnetic field on small scales by using very long-baseline interferometry. The massive star-forming region W75N contains three radio continuum sources (VLA1, VLA2, and VLA3), at three different evolutionary stages, and associated masers, while a large-scale molecular bipolar outflow is also present. Very recently, polarization observations of the 6.7 GHz methanol masers at milliarsecond resolution have been able to probe the strength and structure of the magnetic field over more than 2000 AU around VLA1. The magnetic field is parallel to the outflow, suggesting that VLA1 is its powering source. The observations of water masers at 22 GHz can give more information about the gas dynamics and the magnetic fields around VLA1 and VLA2. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman-splitting of the 22 GHz water masers in the star-forming region W75N. We detected 124 water masers, 36 around VLA1 and 88 around VLA2 of W75N, which indicate two different physical environments around the two sources, where VLA1 is in a more evolved state. The linear polarization of the masers confirms the tightly ordered magnetic field around VLA1, which is aligned with the large-scale molecular outflow, and also reveals an ordered magnetic field around VLA2, which is not parallel to the outflow. [abridged]Comment: 11 pages, 5 figures, 2 Tables, accepted by Astronomy & Astrophysic

    The properties and polarization of the H2O and CH3OH maser environment of NGC7538-IRS1

    Full text link
    NGC7538 is a complex massive star-forming region. The region is composed of several radio continuum sources, one of which is IRS1, a high-mass protostar, from which a 0.3 pc molecular bipolar outflow was detected. Several maser species have been detected around IRS1. The CH3OH masers have been suggested to trace a Keplerian-disk, while the H2O masers are almost aligned to the outflow. More recent results suggested that the region hosts a torus and potentially a disk, but with a different inclination than the Keplerian-disk that is supposed to be traced by the CH3OH masers. Tracing the magnetic field close to protostars is fundamental for determining the orientation of the disk/torus. Recent studies showed that during the protostellar phase of high-mass star formation the magnetic field is oriented along the outflows and around or on the surfaces of the disk/torus. The observations of polarized maser emissions at milliarcsecond resolution can make a crucial contribution to understanding the orientation of the magnetic field and, consequently, the orientation of the disk/torus in NGC7538-IRS1. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman-splitting of the 22GHz H2O masers toward NGC7538-IRS1. The European VLBI Network and the MERLIN telescopes were used to measure the linear polarization and the Zeeman-splitting of the 6.7GHz CH3OH masers toward the same region. We detected 17 H2O masers and 49 CH3OH masers at high angular resolution. We detected linear polarization emission toward two H2O masers and toward twenty CH3OH masers. The CH3OH masers, most of which only show a core structure, seem to trace rotating and potentially infalling gas in the inner part of a torus. Significant Zeeman-splitting was measured in three CH3OH masers. [...] We also propose a new description of the structure of the NGC7538-IRS1 maser region.Comment: 13 pages, 9 figures, 4 Tables, accepted by Astronomy & Astrophysic

    EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions

    Get PDF
    The role of magnetic fields in the formation of high-mass stars is still under debate, and recent measurements of their orientation and strength by using polarized maser emissions are contributing new insights. Masers polarization, in particular of the 6.7-GHz methanol masers, are one of the best probes of the magnetic field morphologies around massive protostars. Determining the magnetic field morphology around an increasing number of massive protostars at milliarcsecond resolution by observing 6.7-GHz methanol masers is crucial to better understand the role of magnetic fields in massive star formation.The First EVN Group consists of 4 massive star-forming complexes: W51, W48, IRAS18556+0138, and W3(OH). These contain well-studied \hii ~regions from some of which molecular bipolar outflows were also detected (W51-e2, G35.20-0.74N). Nine of the European VLBI Network antennas were used to measure the linear polarization and Zeeman-splitting of the 6.7-GHz methanol masers in the star-forming regions of the First EVN Group. We detected a total of 154 CH3OH masers, one third of these towards W3(OH). Fractional linear polarization (1.2-11.5%) was detected towards 55 masers. The linear polarization vectors are well-ordered in all the massive star-forming regions. We measured significant Zeeman-splitting in 3 massive star-forming regions (W51, W48, and W3(OH)) revealing a range of separations -3.5 m/s<\Delta V_{z}<3.8 m/s with the smallest |\Delta V_{z}|=0.4m/s. We were also able to compare our magnetic field results with those obtained from submillimeter wavelength dust observation in W51 and show that the magnetic field at low and high resolutions are in perfect agreement.Comment: 15 pages, 11 figures, 5 tables, accepted by Astronomy & Astrophysic

    Future mmVLBI Research with ALMA: A European vision

    Get PDF
    Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constantsComment: Replaced figures 2 and 3: corrected position SRT. Corrected minor typo in 5.
    corecore