IRAS20126+4104 is a well studied B0.5 protostar that is surrounded by a ~1000
au Keplerian disk and is where a large-scale outflow originates. Both 6.7-GHz
CH3OH masers and 22-GHz H2O masers have been detected toward this young stellar
object. The CH3OH masers trace the Keplerian disk, while the H2O masers are
associated with the surface of the conical jet. Recently, observations of dust
polarized emission (350 um) at an angular resolution of 9 arcseconds (~15000
au) have revealed an S-shaped morphology of the magnetic field around
IRAS20126+4104. The observations of polarized maser emissions at milliarcsecond
resolution (~20 au) can make a crucial contribution to understanding the
orientation of the magnetic field close to IRAS20126+4104. This will allow us
to determine whether the magnetic field morphology changes from arcsecond
resolution to milliarcsecond resolution. The European VLBI Network was used to
measure the linear polarization and the Zeeman splitting of the 6.7-GHz CH3OH
masers toward IRAS20126+4104. The NRAO Very Long Baseline Array was used to
measure the linear polarization and the Zeeman splitting of the 22-GHz H2O
masers toward the same region. We detected 26 CH3OH masers and 5 H2O masers at
high angular resolution. Linear polarization emission was observed toward three
CH3OH masers and toward one H2O maser. Significant Zeeman splitting was
measured in one CH3OH maser (\Delta V_{Z}=-9.2 +/- 1.4 m/s). No significant (5
sigma) magnetic field strength was measured using the H2O masers. We found that
in IRAS20126+4104 the rotational energy is less than the magnetic energy.Comment: 9 pages, 5 figures, 2 tables, accepted by Astronomy & Astrophysic