3,650 research outputs found
Design study for the support of an inertial guidance test facility on gas lubricated compliant surface spherical bearings
Design study for support of inertial guidance test facility on gas lubricated compliant surface spherical bearing
Properties of a radiation-induced charge multiplication region in epitaxial silicon diodes
Charge multiplication (CM) in pn epitaxial silicon pad diodes of 75, 100
and 150 \upmum thickness at high voltages after proton irradiation with 1 MeV
neutron equivalent fluences in the order of cm was studied as
an option to overcome the strong trapping of charge carriers in the innermost
tracking region of future Super-LHC detectors. Charge collection efficiency
(CCE) measurements using the Transient Current Technique (TCT) with radiation
of different penetration (670, 830, 1060 nm laser light and -particles
with optional absorbers) were used to locate the CM region close to the
p-implantation. The dependence of CM on material, thickness of the
epitaxial layer, annealing and temperature was studied. The collected charge in
the CM regime was found to be proportional to the deposited charge, uniform
over the diode area and stable over a period of several days. Randomly
occurring micro discharges at high voltages turned out to be the largest
challenge for operation of the diodes in the CM regime. Although at high
voltages an increase of the TCT baseline noise was observed, the
signal-to-noise ratio was found to improve due to CM for laser light. Possible
effects on the charge spectra measured with laser light due to statistical
fluctuations in the CM process were not observed. In contrast, the relative
width of the spectra increased in the case of -particles, probably due
to varying charge deposited in the CM region.Comment: 11 pages, accepted by NIM
Fine-tuning the functional properties of carbon nanotubes via the interconversion of encapsulated molecules
Tweaking the properties of carbon nanotubes is a prerequisite for their
practical applications. Here we demonstrate fine-tuning the electronic
properties of single-wall carbon nanotubes via filling with ferrocene
molecules. The evolution of the bonding and charge transfer within the tube is
demonstrated via chemical reaction of the ferrocene filler ending up as
secondary inner tube. The charge transfer nature is interpreted well within
density functional theory. This work gives the first direct observation of a
fine-tuned continuous amphoteric doping of single-wall carbon nanotubes
Slovenian Grassland Society: Science, Profession and Practice
The Slovenian Grassland Society (SGS) was established in 1993. It has around 120 members. A half of members are active farmers, around 10% are scientists, the rest are employed in extension services or other agricultural enterprises (seed companies, administration bodies, etc.
Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene
We have measured a strictly linear pi-plasmon dispersion along the axis of
individualized single wall carbon nanotubes, which is completely different from
plasmon dispersions of graphite or bundled single wall carbon nanotubes.
Comparative ab initio studies on graphene based systems allow us to reproduce
the different dispersions. This suggests that individualized nanotubes provide
viable experimental access to collective electronic excitations of graphene,
and it validates the use of graphene to understand electronic excitations of
carbon nanotubes. In particular, the calculations reveal that local field
effects (LFE) cause a mixing of electronic transitions, including the 'Dirac
cone', resulting in the observed linear dispersion
Property relations of cross border couples in the European Union
The book describes the main innovation in the European legal framework after the implementation of the EU Regulations 11003 and 1104/2016 with a specific focus on the interplay with the EU Regulation 650/2012
Gain and time resolution of 45 m thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of n/cm
Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in
charge multiplication layer providing a gain of typically 10 to 50. Due to the
combination of high signal-to-noise ratio and short rise time, thin LGADs
provide good time resolutions.
LGADs with an active thickness of about 45 m were produced at CNM
Barcelona. Their gains and time resolutions were studied in beam tests for two
different multiplication layer implantation doses, as well as before and after
irradiation with neutrons up to n/cm.
The gain showed the expected decrease at a fixed voltage for a lower initial
implantation dose, as well as for a higher fluence due to effective acceptor
removal in the multiplication layer. Time resolutions below 30 ps were obtained
at the highest applied voltages for both implantation doses before irradiation.
Also after an intermediate fluence of n/cm, similar
values were measured since a higher applicable reverse bias voltage could
recover most of the pre-irradiation gain. At n/cm, the
time resolution at the maximum applicable voltage of 620 V during the beam test
was measured to be 57 ps since the voltage stability was not good enough to
compensate for the gain layer loss. The time resolutions were found to follow
approximately a universal function of gain for all implantation doses and
fluences.Comment: 17 page
- …