44 research outputs found

    Attachment of Rod-Like (BAR) Proteins and Membrane Shape

    Get PDF
    Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain

    Wettability studies of topologically distinct titanium surfaces

    Get PDF
    Biomedical implants made of titanium-based materials are expected to have certain essential features including high bone-to-implant contact and optimum osteointegration, which are often influenced by the surface topography and physicochemical properties of titanium surfaces. The surface structure in the nanoscale regime is presumed to alter/facilitate the protein binding, cell adhesion and proliferation, thereby reducing post-operative complications with increased lifespan of biomedical implants. The novelty of our TiO2 nanostructures lies mainly in the high level control over their morphology and roughness by mere compositional change and optimisation of the experimental parameters. The present work focuses on the wetting behaviour of various nanostructured titanium surfaces towards water. Kinetics of contact area of water droplet on macroscopically flat, nanoporous and nanotubular titanium surface topologies was monitored under similar evaporation conditions. The contact area of the water droplet on hydrophobic titanium planar surface (foil) was found to decrease during evaporation, whereas the contact area of the droplet on hydrophobic nanorough titanium surfaces practically remained unaffected until the complete evaporation. This demonstrates that the surface morphology and roughness at the nanoscale level substantially affect the titanium dioxide surface–water droplet interaction, opposing to previous observations for microscale structured surfaces. The difference in surface topographic nanofeatures of nanostructured titanium surfaces could be correlated not only with the time-dependency of the contact area, but also with time-dependency of the contact angle and electrochemical properties of these surfaces

    Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering

    No full text
    Dalija Jesenek,1 Šarká Perutková,2 Wojciech Góźdź,3 Veronika Kralj-Iglič,4 Aleš Iglič,2,5 Samo Kralj1,61Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia; 2Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Department of Complex Systems and Chemical Processing of Information, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; 4Laboratory of Clinical Biophysics, Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia; 5Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 6Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, SloveniaAbstract: Membrane budding often leads to the formation and release of microvesicles. The latter might play an important role in long distance cell-to-cell communication, owing to their ability to move with body fluids. Several mechanisms exist which might trigger the pinching off of globular buds from the parent membrane (vesiculation). In this paper, we consider the theoretical impacts of topological defects (frustrations) on this process in the membranes that exhibit global in-plane orientational order. A Landau–de Gennes theoretical approach is used in terms of tensor orientational order parameters. The impact of membrane shapes on position and the number of defects is analyzed. In studied cases, only defects with winding numbers m = ±1/2 appear, where we refer to the number of defects with m = 1/2 as defects, and with m = –1/2 as anti-defects. It is demonstrated that defects are attracted to regions with maximal positive Gaussian curvature, K. On the contrary, anti-defects are attracted to membrane regions exhibiting minimal negative values of K. We show on membrane structures exhibiting spherical topology that the coexistence of regions with K > 0 and K < 0 might trigger formation of defect–anti-defect pairs for strong enough local membrane curvatures. Critical conditions for triggering pairs are determined in several demonstrative cases. Then the additionally appeared anti-defects are assembled at the membrane neck, where K < 0. Consequent strong local fluctuations of membrane constituent anisotropic molecules might trigger membrane fission neck rupture, enabling a membrane fission process and the release of membrane daughter microvesicles (ie, vesiculation).Keywords: structural transitions, topological defects, membrane microvesicles, membrane curvature, membrane fission, vesiculatio

    Normal red blood cells' shape stabilized by membrane's in-plane ordering

    No full text
    Red blood cells (RBCs) are present in almost all vertebrates and their main function is to transport oxygen to the body tissues. RBCs' shape plays a significant role in their functionality. In almost all mammals in normal conditions, RBCs adopt a disk-like (discocyte) shape, which optimizes their flow properties in vessels and capillaries. Experimentally measured values of the reduced volume (v) of stable discocyte shapes range in a relatively broad window between v ~ 0.58 and 0.8. However, these observations are not supported by existing theoretical membrane-shape models, which predict that discocytic RBC shape is stable only in a very narrow interval of v values, ranging between v ~ 0.59 and 0.65. In this study, we demonstrate that this interval is broadened if a membrane's in-plane ordering is taken into account. We model RBC structures by using a hybrid Helfrich-Landau mesoscopic approach. We show that an extrinsic (deviatoric) curvature free energy term stabilizes the RBC discocyte shapes. In particular, we show on symmetry grounds that the role of extrinsic curvature is anomalously increased just below the nematic in-plane order-disorder phase transition temperature

    Free energy of closed membrane with anisotropic inclusions

    No full text
    Phospholipid membrane forming a closed surface and decorated with anisotropic inclusions is considered. The inclusions are free to redistribute laterally over the membrane and to orient in the plane of the membrane according to the local membrane curvature. A phenomenological expression for the energy of the interaction between an inclusion and local curvature of the surrounding membrane is proposed. Considering this single-inclusion energy, and assuming thermodynamic equilibrium, the free energy of the inclusions, and the consistently related lateral and orientational distributions of the inclusions are obtained using statistical mechanical methods. For a vesicle shape with given surface area, enclosed volume, and total amount of inclusions, the free energy is in general given in a nonlocal form (i.e. it can not be expressed as an integral of its area density over the membrane area). The limits of weak and strong orientational ordering are considered. Specifically, it is shown that in the shape sequence representing the formation of an exovesicle the effect of the membrane curvature on the orientation of the inclusions may stabilize the shape where the exovesicle and the cell are connected by a narrow neck

    Computer Determination of Contact Stress Distribution and Size of Weight Bearing Area in the Human Hip Joint

    No full text
    The mathematical models and the corresponding computer program for determination of the hip joint contact force, the contact stress distribution, and the size of the weight bearing area from a standard anteroposterior radiograph are described. The described method can be applied in clinical practice t
    corecore