263 research outputs found
ILC2-mediated immune crosstalk in chronic (vascular) inflammation
Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases
ILC2-mediated immune crosstalk in chronic (vascular) inflammation
Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases
Women in Alternatives
publishedVersion Non peer reviewe
Exocomets from a Solar System Perspective
Exocomets are small bodies releasing gas and dust which orbit stars other
than the Sun. Their existence was first inferred from the detection of variable
absorption features in stellar spectra in the late 1980s using spectroscopy.
More recently, they have been detected through photometric transits from space,
and through far-IR/mm gas emission within debris disks. As (exo)comets are
considered to contain the most pristine material accessible in stellar systems,
they hold the potential to give us information about early stage formation and
evolution conditions of extra Solar Systems. In the Solar System, comets carry
the physical and chemical memory of the protoplanetary disk environment where
they formed, providing relevant information on processes in the primordial
solar nebula. The aim of this paper is to compare essential compositional
properties between Solar System comets and exocomets. The paper aims to
highlight commonalities and to discuss differences which may aid the
communication between the involved research communities and perhaps also avoid
misconceptions. Exocomets likely vary in their composition depending on their
formation environment like Solar System comets do, and since exocomets are not
resolved spatially, they pose a challenge when comparing them to high fidelity
observations of Solar System comets. Observations of gas around main sequence
stars, spectroscopic observations of "polluted" white dwarf atmospheres and
spectroscopic observations of transiting exocomets suggest that exocomets may
show compositional similarities with Solar System comets. The recent
interstellar visitor 2I/Borisov showed gas, dust and nuclear properties similar
to that of Solar System comets. This raises the tantalising prospect that
observations of interstellar comets may help bridge the fields of exocomet and
Solar System comets.Comment: 25 pages, 3 figures. To be published in PASP. This paper is the
product of a workshop at the Lorentz Centre in Leiden, the Netherland
Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis
CCL17 is produced by conventional dendritic cells, signals through CCR4 on regulatory T (Treg) cells and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that conventional dendritic cells from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, whereas FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Treg cells. Doring, van der Vorst, Yan, Neideck et al. present a non-canonical chemokine pathway involving CCL17 signaling through CCR8, which induces CCL3 expression independent of CCR4 and suppresses the functions of atheroprotective Treg cells
Respondent-Driven Sampling of Injection Drug Users in Two U.S.–Mexico Border Cities: Recruitment Dynamics and Impact on Estimates of HIV and Syphilis Prevalence
Respondent-driven sampling (RDS), a chain referral sampling approach, is increasingly used to recruit participants from hard-to-reach populations, such as injection drug users (IDUs). Using RDS, we recruited IDUs in Tijuana and Ciudad (Cd.) Juárez, two Mexican cities bordering San Diego, CA and El Paso, TX, respectively, and compared recruitment dynamics, reported network size, and estimates of HIV and syphilis prevalence. Between February and April 2005, we used RDS to recruit IDUs in Tijuana (15 seeds, 207 recruits) and Cd. Juárez (9 seeds, 197 recruits), Mexico for a cross-sectional study of behavioral and contextual factors associated with HIV, HCV and syphilis infections. All subjects provided informed consent, an anonymous interview, and a venous blood sample for serologic testing of HIV, HCV, HBV (Cd. Juárez only) and syphilis antibody. Log-linear models were used to analyze the association between the state of the recruiter and that of the recruitee in the referral chains, and population estimates of the presence of syphilis antibody were obtained, correcting for biased sampling using RDS-based estimators. Sampling of the targeted 200 recruits per city was achieved rapidly (2 months in Tijuana, 2 weeks in Cd. Juárez). After excluding seeds and missing data, the sample prevalence of HCV, HIV and syphilis were 96.6, 1.9 and 13.5% respectively in Tijuana, and 95.3, 4.1, and 2.7% respectively in Cd. Juárez (where HBV prevalence was 84.7%). Syphilis cases were clustered in recruitment trees. RDS-corrected estimates of syphilis antibody prevalence ranged from 12.8 to 26.8% in Tijuana and from 2.9 to 15.6% in Ciudad Juárez, depending on how recruitment patterns were modeled, and assumptions about how network size affected an individual’s probability of being included in the sample. RDS was an effective method to rapidly recruit IDUs in these cities. Although the frequency of HIV was low, syphilis prevalence was high, particularly in Tijuana. RDS-corrected estimates of syphilis prevalence were sensitive to model assumptions, suggesting that further validation of RDS is necessary
ARTEFACTS: How do we want to deal with the future of our one and only planet?
The European Commission’s Science and Knowledge Service, the Joint Research Centre (JRC), decided to try working hand-in-hand with leading European science centres and museums.
Behind this decision was the idea that the JRC could better support EU Institutions in engaging with the European public. The fact that European Union policies are firmly based on scientific evidence is a strong message which the JRC is uniquely able to illustrate. Such a collaboration would not only provide a platform to explain the benefits of EU policies to our daily lives but also provide an opportunity for European citizens to engage by taking a more active part in the EU policy making process for the future.
A PILOT PROGRAMME
To test the idea, the JRC launched an experimental programme to work with science museums: a perfect partner for three compelling reasons. Firstly, they attract a large and growing number of visitors. Leading science museums in Europe have typically 500 000 visitors per year. Furthermore, they are based in large European cities and attract local visitors as well as tourists from across Europe and beyond.
The second reason for working with museums is that they have mastered the art of how to communicate key elements of sophisticated arguments across to the public and making complex topics of public interest readily accessible. That is a high-value added skill and a crucial part of the valorisation of public-funded research, never to be underestimated.
Finally museums are, at present, undergoing something of a renaissance. Museums today are vibrant environments offering new techniques and technologies to both inform and entertain, and attract visitors of all demographics.JRC.H.2-Knowledge Management Methodologies, Communities and Disseminatio
- …