64 research outputs found

    Serious asthma events with fluticasone plus salmeterol versus fluticasone alone

    Get PDF
    Background: the safe and appropriate use of long-acting beta-agonists (LABAs) for the treatment of asthma has been widely debated. In two large clinical trials, investigators found a potential risk of serious asthma-related events associated with LABAs. This study was designed to evaluate the risk of administering the LABA salmeterol in combination with an inhaled glucocorticoid, fluticasone propionate. Methods: in this multicenter, randomized, double-blind trial, adolescent and adult patients (age, ≥12 years) with persistent asthma were assigned to receive either fluticasone with salmeterol or fluticasone alone for 26 weeks. All the patients had a history of a severe asthma exacerbation in the year before randomization but not during the previous month. Patients were excluded from the trial if they had a history of life-threatening or unstable asthma. The primary safety end point was the first serious asthma-related event (death, endotracheal intubation, or hospitalization). Noninferiority of fluticasone-salmeterol to fluticasone alone was defined as an upper boundary of the 95% confidence interval for the risk of the primary safety end point of less than 2.0. The efficacy end point was the first severe asthma exacerbation. Results: of 11,679 patients who were enrolled, 67 had 74 serious asthma-related events, with 36 events in 34 patients in the fluticasone-salmeterol group and 38 events in 33 patients in the fluticasone-only group. The hazard ratio for a serious asthma-related event in the fluticasone-salmeterol group was 1.03 (95% confidence interval [CI], 0.64 to 1.66), and noninferiority was achieved (P=0.003). There were no asthma-related deaths; 2 patients in the fluticasone-only group underwent asthma-related intubation. The risk of a severe asthma exacerbation was 21% lower in the fluticasone-salmeterol group than in the fluticasone-only group (hazard ratio, 0.79; 95% CI, 0.70 to 0.89), with at least one severe asthma exacerbation occurring in 480 of 5834 patients (8%) in the fluticasone-salmeterol group, as compared with 597 of 5845 patients (10%) in the fluticasone-only group (P<0.001). Conclusions: patients who received salmeterol in a fixed-dose combination with fluticasone did not have a significantly higher risk of serious asthma-related events than did those who received fluticasone alone. Patients receiving fluticasone-salmeterol had fewer severe asthma exacerbations than did those in the fluticasone-only group. (AUSTRI ClinicalTrials.gov number, NCT01475721)

    A Framework For Detecting Noncoding Rare-Variant associations of Large-Scale Whole-Genome Sequencing Studies

    Get PDF
    Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 toPMed samples. We also analyze five non-lipid toPMed traits

    Type 2 Diabetes Modifies the association of Cad Genomic Risk Variants With Subclinical atherosclerosis

    Get PDF
    BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC

    Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium

    Get PDF
    No funding sources had a role in the design of the study or the analysis or interpretation of the data. Infrastructure for the CHARGE Consortium is supported in part by the National Heart, Lung and Blood Institute (NHLBI) grant R01HL105756. JH, ACM and PSdeV were supported by NIH NHLBI R01HL141291. PSdV was additionally supported by American Heart Association grant number 18CDA34110116. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the NHLBI; the National Institutes of Health; or the U.S. Department of Health and Human Services. The Age, Gene, Environment, Susceptibility Study (AGES) study has been funded by NIH contracts N01-AG-1-2100 and HHSN271201200022C, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I). Funding support for “Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium” was provided by the NIH through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419). Cardiovascular Health Study (CHS) research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at https://chsnhlbi.org/. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The Family Heart Study (FamHS) was supported by the grant R01-HL-117078 from the National Heart, Lung, and Blood Institute, and grant R01-DK-089256 from the National Institute of Diabetes and Digestive and Kidney Diseases. The Framingham Heart Study (FHS) The National Heart, Lung and Blood Institute’s Framingham Heart Study is supported by contract N01-HC-25195. GeneSTAR was supported by grants from the National Institutes of Health/National Heart, Lung and Blood Institute (HL49762, HL59684, HL071025, HL58625, U01 HL72518, HL089474, HL092165, HL099747, K23HL105897, K23HL094747, HL11006, and HL112064), National Institute of Nursing Research (NR0224103, NR008153), National Institute of Neurological Disorders and Stroke (NS062059), and by a grant from the National Center for Research Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center. Genotyping services were provided through the RS&G Service by the Northwest Genomics Center at the University of Washington, Department of Genome Sciences, under U.S. Federal Government contract number HHSN268201100037C from the National Heart, Lung, and Blood Institute. MESA and the MESA SHARe projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420. Also supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. For the Rotterdam Study, the work was supported by the Erasmus Medical Center and Erasmus University, Rotterdam; The Netherlands Organisation for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (014-93-015, RIDE2); the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; the European Commission (DG XII); the Municipality of Rotterdam; The Netherlands Organisation of Scientific Research (NWO) (175.010.2005.011, 911-03-012); the Netherlands Genomics Initiative (NGI) (NWO 050-060-810), the Netherlands Organisation for Scientific Research (NWO) (veni 916.12.154). SHIP is supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung (BMBF); grants 01ZZ9603, 01ZZ0103, and 01ZZ0403) and the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG); grant GR 1912/5-1). The Study of Health in Pomerania (SHIP) and SHIP-TREND are part of the Community Medicine Research net (CMR) of the Ernst-Moritz-Arndt University Greifswald (EMAU) which is funded by the BMBF as well as the Ministry for Education, Science and Culture and the Ministry of Labor, Equal Opportunities, and Social Affairs of the Federal State of Mecklenburg-West Pomerania. The CMR encompasses several research projects that share data from SHIP. The EMAU is a member of the Center of Knowledge Interchange (CKI) program of the Siemens AG. SNP typing of SHIP and SHIP-TREND using the Illumina Infinium HumanExome BeadChip (version v1.0) was supported by the BMBF (grant 03Z1CN22). The Women’s Genome Health Study (WGHS) is supported by the National Heart, Lung, and Blood Institute (HL043851, HL080467, HL099355) and the National Cancer Institute (CA047988 and UM1CA182913), with collaborative scientific support and funding for genotyping provided by Amgen. There was no additional external funding received for this study. Publisher Copyright: Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Background Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome. Methods and results Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confidence interval: 1.43, 2.27; P = 7.12 × 10−7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) > 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event. Conclusion This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Serious Asthma Events with Fluticasone plus Salmeterol versus Fluticasone Alone.

    No full text
    The safe and appropriate use of long-acting beta-agonists (LABAs) for the treatment of asthma has been widely debated. In two large clinical trials, investigators found a potential risk of serious asthma-related events associated with LABAs. This study was designed to evaluate the risk of administering the LABA salmeterol in combination with an inhaled glucocorticoid, fluticasone propionate. In this multicenter, randomized, double-blind trial, adolescent and adult patients (age, ≥12 years) with persistent asthma were assigned to receive either fluticasone with salmeterol or fluticasone alone for 26 weeks. All the patients had a history of a severe asthma exacerbation in the year before randomization but not during the previous month. Patients were excluded from the trial if they had a history of life-threatening or unstable asthma. The primary safety end point was the first serious asthma-related event (death, endotracheal intubation, or hospitalization). Noninferiority of fluticasone-salmeterol to fluticasone alone was defined as an upper boundary of the 95% confidence interval for the risk of the primary safety end point of less than 2.0. The efficacy end point was the first severe asthma exacerbation. Of 11,679 patients who were enrolled, 67 had 74 serious asthma-related events, with 36 events in 34 patients in the fluticasone-salmeterol group and 38 events in 33 patients in the fluticasone-only group. The hazard ratio for a serious asthma-related event in the fluticasone-salmeterol group was 1.03 (95% confidence interval [CI], 0.64 to 1.66), and noninferiority was achieved (P=0.003). There were no asthma-related deaths; 2 patients in the fluticasone-only group underwent asthma-related intubation. The risk of a severe asthma exacerbation was 21% lower in the fluticasone-salmeterol group than in the fluticasone-only group (hazard ratio, 0.79; 95% CI, 0.70 to 0.89), with at least one severe asthma exacerbation occurring in 480 of 5834 patients (8%) in the fluticasone-salmeterol group, as compared with 597 of 5845 patients (10%) in the fluticasone-only group (P<0.001). Patients who received salmeterol in a fixed-dose combination with fluticasone did not have a significantly higher risk of serious asthma-related events than did those who received fluticasone alone. Patients receiving fluticasone-salmeterol had fewer severe asthma exacerbations than did those in the fluticasone-only group. (AUSTRI ClinicalTrials.gov number, NCT01475721.)

    Safety of Adding Salmeterol to Fluticasone Propionate in Children with Asthma.

    No full text
    Long-acting beta-agonists (LABAs) have been shown to increase the risk of asthma-related death among adults and the risk of asthma-related hospitalization among children. It is unknown whether the concomitant use of inhaled glucocorticoids with LABAs mitigates those risks. This trial prospectively evaluated the safety of the LABA salmeterol, added to fluticasone propionate, in a fixed-dose combination in children. We randomly assigned, in a 1:1 ratio, children 4 to 11 years of age who required daily asthma medications and had a history of asthma exacerbations in the previous year to receive fluticasone propionate plus salmeterol or fluticasone alone for 26 weeks. The primary safety end point was the first serious asthma-related event (death, endotracheal intubation, or hospitalization), as assessed in a time-to-event analysis. The statistical design specified that noninferiority would be shown if the upper boundary of the 95% confidence interval of the hazard ratio for the primary safety end point was less than 2.675. The main efficacy end point was the first severe asthma exacerbation that led to treatment with systemic glucocorticoids, as assessed in a time-to-event analysis. Among the 6208 patients, 27 patients in the fluticasone-salmeterol group and 21 in the fluticasone-alone group had a serious asthma-related event (all were hospitalizations); the hazard ratio with fluticasone-salmeterol versus fluticasone alone was 1.28 (95% confidence interval [CI], 0.73 to 2.27), which showed the noninferiority of fluticasone-salmeterol (P=0.006). A total of 265 patients (8.5%) in the fluticasone-salmeterol group and 309 (10.0%) in the fluticasone-alone group had a severe asthma exacerbation (hazard ratio, 0.86; 95% CI, 0.73 to 1.01). In this trial involving children with asthma, salmeterol in a fixed-dose combination with fluticasone was associated with the risk of a serious asthma-related event that was similar to the risk with fluticasone alone. (Funded by GlaxoSmithKline; VESTRI ClinicalTrials.gov number, NCT01462344 .)
    corecore