120 research outputs found
Electrons in an eccentric background field
We present a description of electrons propagating in an elliptically polarized, plane wave background which includes circular and linear polarizations as special cases. We calculate, to all orders in the background field, the two point function and relate it to various expressions found in the literature. The background field induced mass shift of the electron is shown to be polarization independent in the full elliptic class. The matrix nature of this mass shift in the fermionic theory is discussed. The extent to which a momentum space description is possible for this system is clarified
Exact field ionization rates in the barrier suppression-regime from numerical TDSE calculations
Numerically determined ionization rates for the field ionization of atomic
hydrogen in strong and short laser pulses are presented. The laser pulse
intensity reaches the so-called "barrier suppression ionization" regime where
field ionization occurs within a few half laser cycles. Comparison of our
numerical results with analytical theories frequently used shows poor
agreement. An empirical formula for the "barrier suppression ionization"-rate
is presented. This rate reproduces very well the course of the numerically
determined ground state populations for laser pulses with different length,
shape, amplitude, and frequency.
Number(s): 32.80.RmComment: Enlarged and newly revised version, 22 pages (REVTeX) + 8 figures in
ps-format, submitted for publication to Physical Review A, WWW:
http://www.physik.tu-darmstadt.de/tqe
Multiphoton transitions in Josephson-junction qubits (Review Article)
Two basic physical models, a two-level system and a harmonic oscillator, are
realized on the mesoscopic scale as coupled qubit and resonator. The realistic
system includes moreover the electronics for controlling the distance between
the qubit energy levels and their populations and to read out the resonator's
state, as well as the unavoidable dissipative environment. Such rich system is
interesting both for the study of fundamental quantum phenomena on the
mesoscopic scale and as a promising system for future electronic devices. We
present recent results for the driven superconducting qubit-resonator system,
where the resonator can be realized as an LC circuit or a nanomechanical
resonator. Most of the results can be described by the semiclassical theory,
where a qubit is treated as a quantum two-level system coupled to the classical
driving field and the classical resonator. Application of this theory allows to
describe many phenomena for the single and two coupled superconducting qubits,
among which are the following: the equilibrium-state and weak-driving
spectroscopy, Sisyphus damping and amplification, Landau-Zener-St\"uckelberg
interferometry, the multiphoton transitions of both direct and ladder- type
character, and creation of the inverse population for lasing.Comment: 20 pages, 15 figure
Coherent Rabi response of a charge-phase qubit under microwave irradiation
We report on radio-frequency measurements of the charge-phase qubit being
under continuous microwave irradiation in the state of weak coupling to a
radio-frequency tank circuit. We studied the rf impedance dependence on the two
important parameters such as power of microwave irradiation whose frequency is
close to the gap between the two lowest qubit energy levels, and temperature of
the internal heat bath. We have found that backaction effects of the qubit on
the rf tank, and vice versa, tank on the qubit, lead to a negative as well as a
positive real part of the qubit impedance Re seen by the tank. We
have implemented noise spectroscopy measurements for direct impedance readout
at the extreme points corresponding to maximum voltage response and obtained
absolute values of about 0.017 for the negative and positive
Re. Our results demonstrate the existence and persistence of the
coherent single- and multi-photon Rabi dynamics of the qubit with both negative
and positive dynamic resistance inserted into the tank in the temperature range
of 10 to 200 mK.Comment: 11 pages, 9 figure
Dynamical ionization ignition of clusters in intense and short laser pulses
The electron dynamics of rare gas clusters in laser fields is investigated
quantum mechanically by means of time-dependent density functional theory. The
mechanism of early inner and outer ionization is revealed. The formation of an
electron wave packet inside the cluster shortly after the first removal of a
small amount of electron density is observed. By collisions with the cluster
boundary the wave packet oscillation is driven into resonance with the laser
field, hence leading to higher absorption of laser energy. Inner ionization is
increased because the electric field of the bouncing electron wave packet adds
up constructively to the laser field. The fastest electrons in the wave packet
escape from the cluster as a whole so that outer ionization is increased as
well.Comment: 8 pages, revtex4, PDF-file with high resolution figures is available
from http://mitarbeiter.mbi-berlin.de/bauer/publist.html, publication no. 24.
Accepted for publication in Phys. Rev.
Ultrashort filaments of light in weakly-ionized, optically-transparent media
Modern laser sources nowadays deliver ultrashort light pulses reaching few
cycles in duration, high energies beyond the Joule level and peak powers
exceeding several terawatt (TW). When such pulses propagate through
optically-transparent media, they first self-focus in space and grow in
intensity, until they generate a tenuous plasma by photo-ionization. For free
electron densities and beam intensities below their breakdown limits, these
pulses evolve as self-guided objects, resulting from successive equilibria
between the Kerr focusing process, the chromatic dispersion of the medium, and
the defocusing action of the electron plasma. Discovered one decade ago, this
self-channeling mechanism reveals a new physics, widely extending the frontiers
of nonlinear optics. Implications include long-distance propagation of TW beams
in the atmosphere, supercontinuum emission, pulse shortening as well as
high-order harmonic generation. This review presents the landmarks of the
10-odd-year progress in this field. Particular emphasis is laid to the
theoretical modeling of the propagation equations, whose physical ingredients
are discussed from numerical simulations. Differences between femtosecond
pulses propagating in gaseous or condensed materials are underlined. Attention
is also paid to the multifilamentation instability of broad, powerful beams,
breaking up the energy distribution into small-scale cells along the optical
path. The robustness of the resulting filaments in adverse weathers, their
large conical emission exploited for multipollutant remote sensing, nonlinear
spectroscopy, and the possibility to guide electric discharges in air are
finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure
Progress in Classical and Quantum Variational Principles
We review the development and practical uses of a generalized Maupertuis
least action principle in classical mechanics, in which the action is varied
under the constraint of fixed mean energy for the trial trajectory. The
original Maupertuis (Euler-Lagrange) principle constrains the energy at every
point along the trajectory. The generalized Maupertuis principle is equivalent
to Hamilton's principle. Reciprocal principles are also derived for both the
generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis
Principle is the classical limit of Schr\"{o}dinger's variational principle of
wave mechanics, and is also very useful to solve practical problems in both
classical and semiclassical mechanics, in complete analogy with the quantum
Rayleigh-Ritz method. Classical, semiclassical and quantum variational
calculations are carried out for a number of systems, and the results are
compared. Pedagogical as well as research problems are used as examples, which
include nonconservative as well as relativistic systems
Ionization Probabilities through ultra-intense Fields in the extreme Limit
We continue our investigation concerning the question of whether atomic bound
states begin to stabilize in the ultra-intense field limit. The pulses
considered are essentially arbitrary, but we distinguish between three
situations. First the total classical momentum transfer is non-vanishing,
second not both the total classical momentum transfer and the total classical
displacement are vanishing together with the requirement that the potential has
a finite number of bound states and third both the total classical momentum
transfer and the total classical displacement are vanishing. For the first two
cases we rigorously prove, that the ionization probability tends to one when
the amplitude of the pulse tends to infinity and the pulse shape remains fixed.
In the third case the limit is strictly smaller than one. This case is also
related to the high frequency limit considered by Gavrila et al.Comment: 16 pages LateX, 2 figure
- …