200 research outputs found

    Brain development and ADHD

    Get PDF
    Abstract Attention-Deficit/Hyperactivity Disorder (ADHD) is characterized by excessive inattention, hyperactivity, and impulsivity, either alone or in combination. Neuropsychological findings suggest that these behaviors result from underlying deficits in response inhibition, delay aversion, and executive functioning which, in turn, are presumed to be linked to dysfunction of frontalstriatal-cerebellar circuits. Over the past decade, magnetic resonance imaging (MRI) has been used to examine anatomic differences in these regions between ADHD and control children. In addition to quantifying differences in total cerebral volume, specific areas of interest have been prefrontal regions, basal ganglia, the corpus callosum, and cerebellum. Differences in gray and white matter have also been examined. The ultimate goal of this research is to determine the underlying neurophysiology of ADHD and how specific phenotypes may be related to alterations in brain structure. © 2006 Published by Elsevier Ltd. Keywords: ADHD; Development; Brain; Magnetic resonance imaging; Phenotypes; Basal ganglia; Cerebellum According to the DSM-IV-TR, Attention-Deficit/Hyperactivity Disorder (ADHD) is characterized by excessive inattention, hyperactivity, and impulsivity, either alone or in combination (American Psychiatric Association, 2000). Neuropsychological findings suggest that these overt behavioral signs result from underlying deficits in response inhibition, delay aversion, and executive functioning. In turn, these hypothesized psychological deficits are presumed to be linked to dysfunction of frontal-striatal-cerebellar circuits. In particular, much attention has been paid to the neural circuits connecting the prefrontal cortex and the basal ganglia, which likely modulate response inhibition. Further, the cerebellum, which has traditionally been viewed as a motor coordination center, has also been shown to be closely linked to non-motor regions of the cerebral cortex and to play a role in executive functions such as cognitive planning. Over the past decade, magnetic resonance imaging (MRI) has been used to examine anatomic differences in these regions between ADHD and control children. In addition to quantifying differences in total cerebral volume, specific areas of interest have been prefrontal regions, basal ganglia, the corpus callosum, and cerebellum. Differences in gray and white matter have also been examined. The ultimate goal of this research is to determine the underlying neurophysiology of ADHD and how specific phenotypes may be related to alterations in brain structure. The findings of these studies will be discussed in the following review

    Advancing understanding, diagnosis, and therapies for cutaneous lupus erythematosus within the broader context of systemic lupus erythematosus [version 1; peer review: 3 approved]

    Get PDF
    Cutaneous lupus erythematosus (CLE) is an autoimmune disease that can be associated with systemic lupus erythematosus (SLE) symptoms. The pathogenesis of both CLE and SLE is multifactorial, involving genetic susceptibility, environmental factors, and innate and adaptive immune responses. Despite the efficacy of current medications, many patients remain refractory, highlighting the necessity for new treatment options. Unfortunately, owing to challenges related in part to trial design and disease heterogeneity, only one new biologic in the last 50 years has been approved by the US Food and Drug Administration for the treatment of SLE. Thus, although SLE and CLE have a similar pathogenesis, patients with CLE who do not meet criteria for SLE cannot benefit from this advancement. This article discusses the recent trials and emphasizes the need to include patients with single-organ lupus, such as CLE, in SLE trials

    Elevated arousal at time of decision-making is not the arbiter of risk avoidance in chickens

    Get PDF
    The somatic marker hypothesis proposes that humans recall previously experienced physiological responses to aid decision-making under uncertainty. However, little is known about the mechanisms used by non-human animals to integrate risk perception with predicted gains and losses. We monitored the behaviour and physiology of chickens when the choice between a high-gain (large food quantity), high-risk (1 in 4 probability of receiving an air-puff) option (HGRAP) or a low-gain (small food quantity), no-risk (of an air-puff) (LGNAP) option. We assessed when arousal increased by considering different stages of the decision-making process (baseline, viewing, anticipation, reward periods) and investigated whether autonomic responses influenced choice outcome both immediately and in the subsequent trial. Chickens were faster to choose and their heart-rate significantly increased between the viewing and anticipation (post-decision, pre-outcome) periods when selecting the HGRAP option. This suggests that they responded physiologically to the impending risk. Additionally, arousal was greater following a HGRAP choice that resulted in an air-puff, but this did not deter chickens from subsequently choosing HGRAP. In contrast to human studies, we did not find evidence that somatic markers were activated during the viewing period, suggesting that arousal is not a good measure of avoidance in non-human animals

    Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making

    Get PDF
    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more ‘bankruptcies’. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and insular cortex damage

    Activation During Observed Parent–Child Interactions with Anxious Youths: A Pilot Study

    Get PDF
    Parent–child interaction paradigms are often used to observe dysfunctional family processes; however, the influence of such tasks on a participant’s level of activation remain unclear. The aim of this pilot project is to explore the stimulus value of interaction paradigms that have been commonly used in child anxiety research. Twenty-nine parent–child dyads with clinically anxious (n = 16) and non-anxious (n = 13) youths engaged in a series of tasks (threat and non-threat) used in previous studies of parenting and youth anxiety. Heart rate (HR) data, as an indicator of physiological activation, were collected across tasks, and participants rated the perceived representativeness of their interactions in the laboratory to their usual behavior at home. Significant HR changes were observed for both parent and child. Change in child HR from baseline to non-threat task was smaller than change in HR from baseline to threat tasks. Change in parent HR from baseline to ambiguous situations tasks was smaller than changes from baseline to other threat tasks. Differences in HR change between anxious and non-anxious children were explored. Participants rated laboratory interactions as similar to those experienced in the home. Results suggest that presumably emotionally-charged discussion tasks may produce increased activation compared to tasks that were designed to be more neutral. Implications for future research and limitations are discussed

    Developmental Sex Differences in Nicotinic Currents of Prefrontal Layer VI Neurons in Mice and Rats

    Get PDF
    There is a large sex difference in the prevalence of attention deficit disorder; yet, relatively little is known about sex differences in the development of prefrontal attention circuitry. In male rats, nicotinic acetylcholine receptors excite corticothalamic neurons in layer VI, which are thought to play an important role in attention by gating the sensitivity of thalamic neurons to incoming stimuli. These nicotinic currents in male rats are significantly larger during the first postnatal month when prefrontal circuitry is maturing. The present study was undertaken to investigate whether there are sex differences in the nicotinic currents in prefrontal layer VI neurons during development.Using whole cell recording in prefrontal brain slice, we examined the inward currents elicited by nicotinic stimulation in male and female rats and two strains of mice. We found a prominent sex difference in the currents during the first postnatal month when males had significantly greater nicotinic currents in layer VI neurons compared to females. These differences were apparent with three agonists: acetylcholine, carbachol, and nicotine. Furthermore, the developmental sex difference in nicotinic currents occurred despite male and female rodents displaying a similar pattern and proportion of layer VI neurons possessing a key nicotinic receptor subunit.This is the first illustration at a cellular level that prefrontal attention circuitry is differently affected by nicotinic receptor stimulation in males and females during development. This transient sex difference may help to define the cellular and circuit mechanisms that underlie vulnerability to attention deficit disorder

    Hot and Cool Forms of Inhibitory Control and Externalizing Behavior in Children of Mothers who Smoked during Pregnancy: An Exploratory Study

    Get PDF
    This study examined whether children exposed to prenatal smoking show deficits in “hot” and/or “cool” executive functioning (EF). Hot EF is involved in regulation of affect and motivation, whereas cool EF is involved in handling abstract, decontextualized problems. Forty 7 to 9-year-old children (15 exposed to prenatal smoking, 25 non-exposed) performed two computerized tasks. The Sustained Attention Dots (SA-Dots) Task (as a measure of “cool” inhibitory control) requires 400 non-dominant hand and 200 dominant hand responses. Inhibitory control of the prepotent response is required for dominant hand responses. The Delay Frustration Task (DeFT) (as a measure of “hot” inhibitory control) consists of 55 simple maths exercises. On a number of trials delays are introduced before the next question appears on the screen. The extent of response-button pressing during delays indicates frustration-induced inhibitory control. Prenatally exposed children showed poorer inhibitory control in the DeFT than non-exposed children. A dose–response relationship was also observed. In addition, prenatally exposed children had significantly higher (dose-dependent) conduct problem- and hyperactivity-inattention scores. There were no significant group differences in inhibitory control scores from the SA-Dots. These results indicate that children exposed to prenatal smoking are at higher risk of hot but not cool executive function deficits

    The Neural Basis of Decision-Making and Reward Processing in Adults with Euthymic Bipolar Disorder or Attention-Deficit/Hyperactivity Disorder (ADHD)

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) share DSM-IV criteria in adults and cause problems in decision-making. Nevertheless, no previous report has assessed a decision-making task that includes the examination of the neural correlates of reward and gambling in adults with ADHD and those with BD
    corecore