38 research outputs found

    Study of the neutron-rich region in the vicinity of 208Pb via multinucleon transfer reactions

    Get PDF
    The multinucleon transfer reaction mechanism was employed to populate isotopes around the doubly- magic 208 Pb nucleus. We used an unstable 94 Rb beam on 208 Pb targets of different thickness. Transfer channels were studied via the fragment-γ and γ-γ coincidences, by using MINIBALL γ spectrometer coupled to a particle detector. Gamma transitions associated to the different Pb isotopes, populated by the neutron transfers, are discussed in terms of excitation energy and spin. Fragment angular distributions were extracted, andcompared with the reaction model

    A study on the transition between seniority-type and collective excitations in 204Po and 206Po

    Get PDF
    Low-lying yrast states in 204Po and 206Po have been investigated by the γ-γ fast timing technique with LaBr3(Ce) detectors. Excited states of these nuclei were populated in the 197Au(11B,4n) and the 198Pt(12C,4n) fusion-evaporation reactions, respectively, at the FN-Tandem Facility at the University of Cologne. The lifetimes of the 4+1 states in both nuclei were measured, along with an upper limit for the 2+1 state in 204Po. The preliminary results are discussed in the scope of the systematic behavior of the transition strengths between yrast states in polonium isotopes

    Coulomb dissociation of N 20,21

    Get PDF
    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is up to a factor of 5 higher at

    Lifetime measurements of excited states in ¹⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

    Get PDF
    This letter reports lifetime measurements of excited states in the odd-N nucleus 163W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2⁺ → 17/2⁺)/B(E2:17/2⁺ → 13/2⁺) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed

    The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus ¹³³Sb

    Get PDF
    The γ-ray decay of excited states of the one-valence-proton nucleus ¹³³Sb has been studied using cold-neutron induced fission of ²³⁵U and ²⁴¹Pu targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between γ-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 μs isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr₃(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus ¹³²Sn and the valence proton, using the Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin

    Coulomb dissociation of 16O into 4He and 12C

    Get PDF
    We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision
    corecore