46 research outputs found

    A review of the structure and function of vital registration system in Ghana: towards improvement in mortality data quality for health policy analysis

    Get PDF
    Fobil JN, Aryee E, Bilson F, May J, Krämer A. A review of the structure and function of vital registration system in Ghana: towards improvement in mortality data quality for health policy analysis. Journal of Public Health in Africa. 2011;2(1):e5

    Voltage control of magnetism with magneto-ionic approaches : beyond voltage-driven oxygen ion migration

    Get PDF
    Magneto-ionics is an emerging field in materials science where voltage is used as an energy-efficient means to tune magnetic properties, such as magnetization, coercive field, or exchange bias, by voltage-driven ion transport. We first discuss the emergence of magneto-ionics in the last decade, its core aspects, and key avenues of research. We also highlight recent progress in materials and approaches made during the past few years. We then focus on the "structural-ion"approach as developed in our research group in which the mobile ions are already present in the target material and discuss its potential advantages and challenges. Particular emphasis is given to the energetic and structural benefits of using nitrogen as the mobile ion, as well as on the unique manner in which ionic motion occurs in CoN and FeN systems. Extensions into patterned systems and textures to generate imprinted magnetic structures are also presented. Finally, we comment on the prospects and future directions of magneto-ionics and its potential for practical realizations in emerging fields, such as neuromorphic computing, magnetic random-access memory, or micro- and nano-electromechanical systems

    From Binary to Ternary Transition-Metal Nitrides: A Boost toward Nitrogen Magneto-Ionics

    Get PDF
    Magneto-ionics is an emerging actuation mechanism to control the magnetic properties of materials via voltage-driven ion motion. This effect largely relies on the strength and penetration of the induced electric field into the target material, the amount of generated ion transport pathways, and the ionic mobility inside the magnetic media. Optimizing all these factors in a simple way is a huge challenge, although highly desirable for technological applications. Here, we demonstrate that the introduction of suitable transition-metal elements to binary nitride compounds can drastically boost magneto-ionics. More specifically, we show that the attained magneto-ionic effects in CoN films (i.e., saturation magnetization, toggling speeds, and cyclability) can be drastically enhanced through 10% substitution of Co by Mn in the thin-film composition. Incorporation of Mn leads to transformation from nanocrystalline into amorphous-like structures, as well as from metallic to semiconducting behaviors, resulting in an increase of N-ion transport channels. Ab initio calculations reveal a lower energy barrier for CoMn–N compared to Co–N that provides a fundamental understanding of the crucial role of Mn addition in the voltage-driven magnetic effects. These results constitute an important step forward toward enhanced voltage control of magnetism via electric field-driven ion motion

    Critical Role of Electrical Resistivity in Magnetoionics

    Get PDF
    The utility of electrical resistivity as an indicator of magnetoionic performance in stoichiometrically and structurally similar thin-film systems is demonstrated. A series of highly nanocrystalline cobalt nitride (Co-N) thin films (85 nm thick) with a broad range of electrical properties exhibit markedly different magnetoionic behaviors. Semiconducting, near stoichiometric CoN films show the best performance, better than their metallic and insulating counterparts. Resistivity reflects the interplay between atomic bonding, carrier localization, and structural defects, and in turn determines the strength and distribution of applied electric fields inside the actuated films. This fact, generally overlooked, reveals that resistivity can be used to quickly evaluate the potential of a system to exhibit optimal magnetoionic effects, while also opening interesting challenges.Financial support by the European Research Council (SPIN-PORICS 2014-Consolidator Grant, Agreement No. 648454, and the MAGIC-SWITCH 2019-Proof of Concept Grant, Agreement No. 875018), the Spanish Government (MAT2017-86357-C3-1-R and PID2020- 116844RB-C21), the Generalitat de Catalunya (2017- SGR-292 and 2018-LLAV-00032) and the European Regional Development Fund (MAT2017-86357-C3-1-R and 2018-LLAV-00032) is acknowledged. This work was partially supported by the Impulse-und Net-working fund of the Helmholtz Association (FKZ VH-VI-442 Memriox), and the Helmholtz Energy Materials Characterization Platform (03ET7015). The PALS measurements were carried out at ELBE at the Helmholtz-Zentrum DresdenRossendorf e. V., a member of the Helmholtz Association. L.A. thanks MINECO for a Ramón y Cajal Contract (RYC-2013-12640). J.S. thanks the Spanish Fábrica Nacional de Moneda y Timbre for fruitful discussions. E.M. acknowledges support as a Serra Húnter Fellow. We acknowledge service from MiNa Laboratory at IMNCSIC

    Magneto-ionics in single-layer transition metal nitrides

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICMagneto-ionics allows for tunable control of magnetism by voltage-driven transport of ions, traditionally oxygen or lithium and, more recently, hydrogen, fluorine, or nitrogen. Here, magneto-ionic effects in single-layer iron nitride films are demonstrated, and their performance is evaluated at room temperature and compared with previously studied cobalt nitrides. Iron nitrides require increased activation energy and, under high bias, exhibit more modest rates of magneto-ionic motion than cobalt nitrides. Ab initio calculations reveal that, based on the atomic bonding strength, the critical field required to induce nitrogen-ion motion is higher in iron nitrides (≈6.6 V nm -1) than in cobalt nitrides (≈5.3 V nm -1). Nonetheless, under large bias (i.e., well above the magneto-ionic onset and, thus, when magneto-ionics is fully activated), iron nitride films exhibit enhanced coercivity and larger generated saturation magnetization, surpassing many of the features of cobalt nitrides. The microstructural effects responsible for these enhanced magneto-ionic effects are discussed. These results open up the potential integration of magneto-ionics in existing nitride semiconductor materials in view of advanced memory system architectures

    Boosting room-temperature magneto-ionics in a non-magnetic oxide semiconductor

    Get PDF
    Voltage control of magnetism through electric field-induced oxygen motion (magneto-ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in magnetically actuated devices. Boosting the induced changes in magnetization, magneto-ionic rates and cyclability continue to be key challenges to turn magneto-ionics into real applications. Here, it is demonstrated that room-temperature magneto-ionic effects in electrolyte-gated paramagnetic Co3O4 films can be largely increased both in terms of generated magnetization (6 times larger) and speed (35 times faster) if the electric field is applied using an electrochemical capacitor configuration (utilizing an underlying conducting buffer layer) instead of placing the electric contacts at the side of the semiconductor (electric-double-layer transistor-like configuration). This is due to the greater uniformity and strength of the electric field in the capacitor design. These results are appealing to widen the use of ion migration in technological applications such as neuromorphic computing or iontronics in general

    Frequency-dependent stimulated and post-stimulated voltage control of magnetism in transition metal nitrides: towards brain-inspired magneto-ionics

    Get PDF
    Magneto-ionics, which deals with the change of magnetic properties through voltage-driven ion migration, is expected to be one of the emerging technologies to develop energy-efficient spintronics. While a precise modulation of magnetism is achieved when voltage is applied, much more uncontrolled is the spontaneous evolution of magneto-ionic systems upon removing the electric stimuli (i.e., post-stimulated behavior). Here, we demonstrate a voltage-controllable N ion accumulation effect at the outer surface of CoN films adjacent to a liquid electrolyte, which allows for the control of magneto-ionic properties both during and after voltage pulse actuation (i.e., stimulated and post-stimulated behavior, respectively). This effect, which takes place when the CoN film thickness is below 50 nm and the voltage pulse frequency is at least 100 Hz, is based on the trade-off between generation (voltage ON) and partial depletion (voltage OFF) of ferromagnetism in CoN by magneto-ionics. This novel effect may open opportunities for new neuromorphic computing functions, such as post-stimulated neural learning under deep sleep.Financial support by the European Research Council (MAGIC-SWITCH 2019-Proof of Concept Grant, Agreement No. 875018), the European Union's Horizon 2020 research and innovation programme (European Training Network, BeMAGIC ETN/ITN Marie Skłodowska-Curie grant No. 861145; and Integrated Infrastructure, RADIATE, grant No. 824096), the Spanish Government (MAT2017-86357-C3-1-R, PID2020-116844RB-C21 and PDC2021-121276-C3), the Generalitat de Catalunya (2017-SGR-292 and 2018-LLAV-00032), the European Regional Development Fund (MAT2017-86357-C3-1-R and 2018-LLAV-00032) and the KU Leuven (BOF program) is acknowledged. A. Q. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities through the “Severo Ochoa” Programme for Centers of Excellence in R&D (FUNFUTURE CEX2019-000917-S) and the Juan de la Cierva formación contract (FJC2019-039780-I). J. S. thanks the Spanish Fábrica Nacional de Moneda y Timbre (FNMT) for fruitful discussions. The XAS measurements were performed at BL29-BOREAS beamline at ALBA Synchrotron with the collaboration of ALBA staff. We acknowledge service from MiNa Laboratory at IMN, and funding from CM (project S2018/NMT-4291 TEC2SPACE), MINECO (project CSIC13-4E-1794) and EU (FEDER, FSE). E. M. is a Serra Húnter Fellow.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Palatinate Dictionary - PfWB (ELEXIS)

    No full text
    Pfälzisches Wörterbuch. The Palatinate Dictionary lists the entire dialectal vocabulary of the Palatinate in use today
    corecore