55 research outputs found
Analysis of fast neutron transport in chloride salts using Monte Carlo method
The aim of this paper is to present results of fast neutron behavior analysis within the chloride salts environment using simulations based on Monte Carlo method (MCNP 6.2). Three non-fueled salts (NaCl, KCl, MgCl2) and two salts containing fissile material (UCl3, ThCl4) were studied. Results of this theoretical study will be used for design of an experimental assembly, which will serve to achieve goals of the international research project ADAR (Accelerator Driven Advanced Reactor). One of the project objectives is to investigate chloride salts as potential coolant and a dissolved fuel carrier of advanced nuclear reactor cooled by molten salts and driven by an accelerator
Decay Types and Fungal Communities of Norway Spruce Dead Wood in Europe
departmental bulletin pape
allodb: An R package for biomass estimation at globally distributed extratropical forest plots
Allometric equations for calculation of tree above-ground biomass (AGB) form the basis for estimates of forest carbon storage and exchange with the atmosphere. While standard models exist to calculate forest biomass across the tropics, we lack a standardized tool for computing AGB across boreal and temperate regions that comprise the global extratropics. Here we present an integrated R package, allodb, containing systematically selected published allometric equations and proposed functions to compute AGB. The data component of the package is based on 701 woody species identified at 24 large Forest Global Earth Observatory (ForestGEO) forest dynamics plots representing a wide diversity of extratropical forests. A total of 570 parsed allometric equations to estimate individual tree biomass were retrieved, checked and combined using a weighting function designed to ensure optimal equation selection over the full tree size range with smooth transitions across equations. The equation dataset can be customized with built-in functions that subset the original dataset and add new equations. Although equations were curated based on a limited set of forest communities and number of species, this resource is appropriate for large portions of the global extratropics and can easily be expanded to cover novel forest types
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae
We systematically surveyed period variations of superhumps in SU UMa-type
dwarf novae based on newly obtained data and past publications. In many
systems, the evolution of superhump period are found to be composed of three
distinct stages: early evolutionary stage with a longer superhump period,
middle stage with systematically varying periods, final stage with a shorter,
stable superhump period. During the middle stage, many systems with superhump
periods less than 0.08 d show positive period derivatives. Contrary to the
earlier claim, we found no clear evidence for variation of period derivatives
between superoutburst of the same object. We present an interpretation that the
lengthening of the superhump period is a result of outward propagation of the
eccentricity wave and is limited by the radius near the tidal truncation. We
interpret that late stage superhumps are rejuvenized excitation of 3:1
resonance when the superhumps in the outer disk is effectively quenched. Many
of WZ Sge-type dwarf novae showed long-enduring superhumps during the
post-superoutburst stage having periods longer than those during the main
superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to
be strongly correlated with the fractional superhump excess, or consequently,
mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with
multiple rebrightenings tend to have smaller period derivatives and are
excellent candidate for the systems around or after the period minimum of
evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte
Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”
Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings—(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance—persist even after controlling for other processes that might influence spatial relationships between adults and recruits
Recommended from our members
Latitudinal patterns in stabilizing density dependence of forest communities
Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10,11,12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests
Major axes of variation in tree demography across global forests
The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio-temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems
Global importance of large-diameter trees
Aim: To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.
Location: Global.
Time period: Early 21st century.
Major taxa studied: Woody plants.
Methods: We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass.
Results: Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001).
Main conclusions: Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services
- …