69 research outputs found

    Receptor-Mediated Endocytosis of α-Galactosidase A in Human Podocytes in Fabry Disease

    Get PDF
    Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three endocytic receptors, mannose 6-phosphate/insulin-like growth II receptor, megalin, and sortilin and demonstrates their drug delivery capabilities for enzyme replacement therapy. Sortilin, a novel α-galactosidase A binding protein, reveals a predominant intracellular expression but also surface expression in the podocyte. The present study provides the rationale for the renal effect of treatment with α-galactosidase A and identifies potential pathways for future non-carbohydrate based drug delivery to the kidney podocyte and other potential affected organs

    Bioinformatic and Genetic Association Analysis of MicroRNA Target Sites in One-Carbon Metabolism Genes

    Get PDF
    One-carbon metabolism (OCM) is linked to DNA synthesis and methylation, amino acid metabolism and cell proliferation. OCM dysfunction has been associated with increased risk for various diseases, including cancer and neural tube defects. MicroRNAs (miRNAs) are ∼22 nt RNA regulators that have been implicated in a wide array of basic cellular processes, such as differentiation and metabolism. Accordingly, mis-regulation of miRNA expression and/or activity can underlie complex disease etiology. We examined the possibility of OCM regulation by miRNAs. Using computational miRNA target prediction methods and Monte-Carlo based statistical analyses, we identified two candidate miRNA “master regulators” (miR-22 and miR-125) and one candidate pair of “master co-regulators” (miR-344-5p/484 and miR-488) that may influence the expression of a significant number of genes involved in OCM. Interestingly, miR-22 and miR-125 are significantly up-regulated in cells grown under low-folate conditions. In a complementary analysis, we identified 15 single nucleotide polymorphisms (SNPs) that are located within predicted miRNA target sites in OCM genes. We genotyped these 15 SNPs in a population of healthy individuals (age 18–28, n = 2,506) that was previously phenotyped for various serum metabolites related to OCM. Prior to correction for multiple testing, we detected significant associations between TCblR rs9426 and methylmalonic acid (p  =  0.045), total homocysteine levels (tHcy) (p  =  0.033), serum B12 (p < 0.0001), holo transcobalamin (p < 0.0001) and total transcobalamin (p < 0.0001); and between MTHFR rs1537514 and red blood cell folate (p < 0.0001). However, upon further genetic analysis, we determined that in each case, a linked missense SNP is the more likely causative variant. Nonetheless, our Monte-Carlo based in silico simulations suggest that miRNAs could play an important role in the regulation of OCM

    A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer

    Get PDF
    Genome-wide association studies (GWAS) of colorectal cancer (CRC) have identified 23 susceptibility loci thus far. Analyses of previously conducted GWAS indicate additional risk loci are yet to be discovered. To identify novel CRC susceptibility loci, we conducted a new GWAS and performed a meta-analysis with five published GWAS (totalling 7,577 cases and 9,979 controls of European ancestry), imputing genotypes utilising the 1000 Genomes Project. The combined analysis identified new, significant associations with CRC at 1p36.2 marked by rs72647484 (minor allele frequency [MAF] = 0.09) near CDC42 and WNT4 (P = 1.21 × 10−8, odds ratio [OR] = 1.21 ) and at 16q24.1 marked by rs16941835 (MAF = 0.21, P = 5.06 × 10−8; OR = 1.15) within the long non-coding RNA (lncRNA) RP11-58A18.1 and ~500 kb from the nearest coding gene FOXL1. Additionally we identified a promising association at 10p13 with rs10904849 intronic to CUBN (MAF = 0.32, P = 7.01 × 10-8; OR = 1.14). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CRC. Additionally, our analysis further demonstrates that imputation can be used to exploit GWAS data to identify novel disease-causing variants

    Focal nodular hyperplasia of the liver: Composition of the extracellular matrix and expression of cell-cell and cell-matrix adhesion molecules

    No full text
    We studied by immunohistochemistry 25 cases of focal nodular hyperplasia (FNH) to evaluate the composition of the extracellular matrix and the expression and distribution of endothelial cell-cell adhesion molecules and integrin receptors. The extracellular matrix of FNH retained the overall organization of that of normal liver. The matrix of central scars resembled that of portal tracts. The main difference was the presence of large vitronectin deposits, which might indicate the existence of local hemodynamic disturbances. The matrix lining the sinusoid-like vessels running in the hyperplastic parenchyma retained characteristic features of the normal perisinusoidal matrix, such as the presence of tenascin. In the zone surrounding the central scars, it contained large amounts of laminin, von Willebrand factor, and thrombospondin, suggesting the development of perisinusoidal fibrosis. Laminin deposition was accompanied by the induction of cell-cell adhesion molecules on adjacent endothelial cells and by the up-regulation of specific integrin receptors on both hepatocytes and sinusoidal endothelial cells. In conclusion, our study: (1) reinforces the hypothesis that FNH is merely a hyperplastic response of liver parenchyma to local vascular abnormalities, and (2) shows that the lesions of perisinusoidal fibrosis associated with FNH are accompanied by the induction of integrin receptors on hepatocytes and sinusoidal endothelial cells. © 1995

    Expression and role of cubilin in the internalization of nutrients during the peri-implantation development of the rodent embryo

    No full text
    Histiotrophic nutrition is essential during the peri-implantation development in rodents, but little is known about receptors involved in protein and lipid endocytosis derived from the endometrium and the uterine glands. Previous studies suggested that cubilin, a multiligand receptor for vitamin, iron, and protein uptake in the adult, might be important in this process, but the onset of its expression and function is not known. In this study, we analyzed the expression of cubilin in the pre- and early post-implantation rodent embryo and tested its potential function in protein and cholesterol uptake. Using morphological and Western blot analysis, we showed that cubilin first appeared at the eight-cell stage. It was expressed by the maternal-fetal interfaces, trophectoderm and visceral endoderm, but also by the future neuroepithelial cells and the developing neural tube. At all these sites, cubilin was localized at the apical pole of the cells exposed to the maternal environment or to the amniotic and neural tube cavities, and had a very similar distribution to megalin, a member of the LDLR gene family and a coreceptor for cubilin in adult tissues. To analyze cubilin function, we followed endocytosis of apolipoprotein A-I and HDL cholesterol, nutrients normally present in the uterine glands and essential for embryonic growth. We showed that internalization of both ligands was cubilin dependent during the early rodent gestation. In conclusion, the early cubilin expression and its function in protein and cholesterol uptake suggest an important role for cubilin in the development of the peri-implantation embryo

    Gastric Physiology

    No full text
    corecore