1,303 research outputs found

    Modeling of SAR signatures of shallow water ocean topography

    Get PDF
    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present

    Consensus formation on coevolving networks: groups' formation and structure

    Full text link
    We study the effect of adaptivity on a social model of opinion dynamics and consensus formation. We analyze how the adaptivity of the network of contacts between agents to the underlying social dynamics affects the size and topological properties of groups and the convergence time to the stable final state. We find that, while on static networks these properties are determined by percolation phenomena, on adaptive networks the rewiring process leads to different behaviors: Adaptive rewiring fosters group formation by enhancing communication between agents of similar opinion, though it also makes possible the division of clusters. We show how the convergence time is determined by the characteristic time of link rearrangement. We finally investigate how the adaptivity yields nontrivial correlations between the internal topology and the size of the groups of agreeing agents.Comment: 10 pages, 3 figures,to appear in a special proceedings issue of J. Phys. A covering the "Complex Networks: from Biology to Information Technology" conference (Pula, Italy, 2007

    Synchronization in Weighted Uncorrelated Complex Networks in a Noisy Environment: Optimization and Connections with Transport Efficiency

    Full text link
    Motivated by synchronization problems in noisy environments, we study the Edwards-Wilkinson process on weighted uncorrelated scale-free networks. We consider a specific form of the weights, where the strength (and the associated cost) of a link is proportional to (kikj)β(k_{i}k_{j})^{\beta} with kik_{i} and kjk_{j} being the degrees of the nodes connected by the link. Subject to the constraint that the total network cost is fixed, we find that in the mean-field approximation on uncorrelated scale-free graphs, synchronization is optimal at β\beta^{*}==-1. Numerical results, based on exact numerical diagonalization of the corresponding network Laplacian, confirm the mean-field results, with small corrections to the optimal value of β\beta^{*}. Employing our recent connections between the Edwards-Wilkinson process and resistor networks, and some well-known connections between random walks and resistor networks, we also pursue a naturally related problem of optimizing performance in queue-limited communication networks utilizing local weighted routing schemes.Comment: Papers on related research can be found at http://www.rpi.edu/~korniss/Research

    Consensus formation on adaptive networks

    Full text link
    The structure of a network can significantly influence the properties of the dynamical processes which take place on them. While many studies have been devoted to this influence, much less attention has been devoted to the interplay and feedback mechanisms between dynamical processes and network topology on adaptive networks. Adaptive rewiring of links can happen in real life systems such as acquaintance networks where people are more likely to maintain a social connection if their views and values are similar. In our study, we consider different variants of a model for consensus formation. Our investigations reveal that the adaptation of the network topology fosters cluster formation by enhancing communication between agents of similar opinion, though it also promotes the division of these clusters. The temporal behavior is also strongly affected by adaptivity: while, on static networks, it is influenced by percolation properties, on adaptive networks, both the early and late time evolution of the system are determined by the rewiring process. The investigation of a variant of the model reveals that the scenarios of transitions between consensus and polarized states are more robust on adaptive networks.Comment: 11 pages, 14 figure

    Modeling Learning and Strategy Formation as Phase Transitions in Cortical Networks

    Get PDF

    Late-time supernova light curves: The effect of internal conversion and Auger electrons

    Full text link
    Energy release from radioactive decays contributes significantly to supernova light curves. Previous works, which considered the energy deposited by gamma-rays and positrons produced by 56Ni, 56Co, 57Ni, 57Co, 44Ti and 44Sc, have been quite successful in explaining the light curves of both core collapse and thermonuclear supernovae. We point out that Auger and internal conversion electrons together with the associated X-ray cascade, constitute an additional heat source. When a supernova is transparent to gamma-rays, these electrons can contribute significantly to light curves for reasonable nucleosynthetic yields. In particular, the electrons emitted in the decay of 57Co, which are largely due to internal conversion from a fortuitously low-lying 3/2- state in the daughter 57Fe, constitute an additional significant energy deposition channel. We show that when the heating by these electrons is accounted for, a slow-down in the lightcurve of SN 1998bw is naturally obtained for typical hypernova nucleosynthetic yields. Additionally, we show that for generic Type Ia supernova yields, the Auger electrons emitted in the ground-state to ground-state electron capture decay of 55Fe exceed the energy released by the 44Ti decay chain for many years after the explosion.Comment: 6 pages, 2 figures, 1 table, MNRAS in press, v2 with updated reference

    Testing the Collective Properties of Small-World Networks through Roughness Scaling

    Full text link
    Motivated by a fundamental synchronization problem in scalable parallel computing and by a recent criterion for ``mean-field'' synchronizability in interacting systems, we study the Edwards-Wilkinson model on two variations of a small-worldnetwork. In the first version each site has exactly one random link of strength pp, while in the second one each site on average has pp links of unit strength. We construct a perturbative description for the width of the stationary-state surface (a measure of synchronization), in the weak- and sparse-coupling limits, respectively, and verify the results by performing exact numerical diagonalization. The width remains finite in both cases, but exhibits anomalous scaling with pp in the latter for d2d\leq 2.Comment: 4 pages, 3 figure

    Natural infection of Run1-positive vines by naïve genotypes of Erysiphe necator

    Get PDF
    The Run1 locus for dominant resistance to powdery mildew (Erysiphe necator) has been successfully introgressed into Euvitis from Vitis rotundifolia. In the current study, Run1 vines were hybridized with breeding lines at Cornell University, and the presence of the locus was assayed using the markers GLP1-12 and VMC8g9. Signs of powdery mildew were observed on 14 of 113 Run1-positive seedlings in October 2010 in Geneva, N.Y. Severity of infection was lower for Run1-positive than for Run1-negative seedlings. Presence of mature cleistothecia suggested infection by at least two pathogen genotypes, which since V. rotundifolia is not grown within 800+ km of Geneva, N.Y., evolved from a pathogen population naïve to Run1 resistance. Therefore, caution in the deployment of the Run1 locus in new resistant cultivars is suggested so the effectiveness of Run1 does not diminish over time.
    corecore