233 research outputs found

    Combining Independent, Weighted P-Values: Achieving Computational Stability by a Systematic Expansion with Controllable Accuracy

    Get PDF
    Given the expanding availability of scientific data and tools to analyze them, combining different assessments of the same piece of information has become increasingly important for social, biological, and even physical sciences. This task demands, to begin with, a method-independent standard, such as the -value, that can be used to assess the reliability of a piece of information. Good's formula and Fisher's method combine independent -values with respectively unequal and equal weights. Both approaches may be regarded as limiting instances of a general case of combining -values from groups; -values within each group are weighted equally, while weight varies by group. When some of the weights become nearly degenerate, as cautioned by Good, numeric instability occurs in computation of the combined -values. We deal explicitly with this difficulty by deriving a controlled expansion, in powers of differences in inverse weights, that provides both accurate statistics and stable numerics. We illustrate the utility of this systematic approach with a few examples. In addition, we also provide here an alternative derivation for the probability distribution function of the general case and show how the analytic formula obtained reduces to both Good's and Fisher's methods as special cases. A C++ program, which computes the combined -values with equal numerical stability regardless of whether weights are (nearly) degenerate or not, is available for download at our group website http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/CoinedPValues.html

    Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma

    Get PDF
    Following an i.p. dose of 150 mg x kg(-1) 5-fluorouracil (5-FU), drug uptake and metabolism over a 2-h period were studied by in vivo (19)F magnetic resonance spectroscopy (MRS) for the murine colon carcinoma lines C26-B (5-FU-insensitive; n=11) and C26-10 (5-FU-sensitive; n=15) implanted s.c. in Balb/C mice. Time courses for tumour growth, intracellular levels of FdUMP, thymidylate synthase (TS) activity, and 5-FU in RNA were also determined, and the effects of a 9.5-min period of carbogen breathing, starting 1 min before drug administration, on MRS-detected 5-FU metabolism and tumour growth curves were examined. Both tumour variants generated MRS-detectable 5-FU nucleotides and showed similar initial growth inhibition after treatment. However, the growth rate of C26-B tumours returned to normal, while the sensitive C26-10 tumours, which produced larger fluoronucleotide pools, still showed moderate growth inhibition. Carbogen breathing did not significantly influence 5-FU uptake or fluoronucleotide production but did significantly enhance growth inhibition in C26-10 tumours. While both tumour variants exhibited incorporation of 5-FU into RNA and inhibition of TS via FdUMP, clearance of 5-FU from RNA and recovery of TS activity were greater for the insensitive C26-B line, indicating that these processes, in addition to 5-FU uptake and metabolism, may be important determinants of drug sensitivity and treatment respons

    Hyperbaric oxygen therapy for painful bladder syndrome/interstitial cystitis resistant to conventional treatments: long-term results of a case series in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no confirmed strategy for treating painful bladder syndrome/interstitial cystitis (PBS/IC) with unclear etiology. Therefore, a pilot study was carried out to evaluate the efficacy and safety of hyperbaric oxygen (HBO) therapy in treatment-resistant PBS/IC patients.</p> <p>Methods</p> <p>HBO treatment (2.0 ATA for 60 minutes/day × 5 days/week for 2 or 4 weeks) was performed on 11 patients with severe symptoms that had not been improved by previous therapy regimens between December 2004 and July 2009.</p> <p>Results</p> <p>Seven of the 11 patients demonstrated persistent improvement in symptoms during the 12 months after HBO treatment. These responders demonstrated a decrease in the pelvic pain scale and urgency scale from 7.7 ± 1.0 and, 6.6 ± 0.9 to 3.4 ± 2.5 and 4.3 ± 2.4 after 12 months, respectively (p < 0.05). The total score of the interstitial cystitis symptom index and 24-hour urinary frequency demonstrated a significant sustained decrease from the baseline. Two responders, who received an additional course of HBO 12 and 13 months after initial treatment, respectively, did not suffer impairment for more than two years. There was one case of transient eustachian tube dysfunction and three cases of reversible exudative otitis media as a consequence of HBO treatment.</p> <p>Conclusions</p> <p>HBO is a potent treatment for PBS/IC patients resistant to conventional therapy. It was well tolerated and provided maintained amelioration of pain, urgency and urinary frequency for at least 12 months.</p

    The Marker State Space (MSS) Method for Classifying Clinical Samples

    Get PDF
    The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines "marker states" based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications. © 2013 Fallon et al

    Evolution of light-harvesting complex proteins from Chl c-containing algae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Light harvesting complex (LHC) proteins function in photosynthesis by binding chlorophyll (Chl) and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl <it>a </it>and <it>b </it>and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl <it>a </it>and <it>c</it>, and that are widely distributed in Chl <it>c</it>-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs.</p> <p>Results</p> <p>We reconstruct a phylogeny of LHCs from Chl <it>c</it>-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification.</p> <p>Conclusion</p> <p>The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed support for the hypothesized origin of Chl <it>c </it>plastids. This work also allows recent experimental findings about molecular function to be understood in a broader phylogenetic context.</p

    Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer

    Get PDF
    BACKGROUND: Chemotherapy for pancreatic carcinoma often has severe side effects that limit its efficacy. The glucocorticoid (GC) dexamethasone (DEX) is frequently used as co-treatment to prevent side effects of chemotherapy such as nausea, for palliative purposes and to treat allergic reactions. While the potent pro-apoptotic properties and the supportive effects of GCs to tumour therapy in lymphoid cells are well studied, the impact of GCs to cytotoxic treatment of pancreatic carcinoma is unknown. METHODS: A prospective study of DEX-mediated resistance was performed using a pancreatic carcinoma xenografted to nude mice, 20 surgical resections and 10 established pancreatic carcinoma cell lines. Anti-apoptotic signaling in response to DEX was examined by Western blot analysis. RESULTS: In vitro, DEX inhibited drug-induced apoptosis and promoted the growth in all of 10 examined malignant cells. Ex vivo, DEX used in physiological concentrations significantly prevented the cytotoxic effect of gemcitabine and cisplatin in 18 of 20 freshly isolated cell lines from resected pancreatic tumours. No correlation with age, gender, histology, TNM and induction of therapy resistance by DEX co-treatment could be detected. In vivo, DEX totally prevented cytotoxicity of chemotherapy to pancreatic carcinoma cells xenografted to nude mice. Mechanistically, DEX upregulated pro-survival factors and anti-apoptotic genes in established pancreatic carcinoma cells. CONCLUSION: These data show that DEX induces therapy resistance in pancreatic carcinoma cells and raise the question whether GC-mediated protection of tumour cells from cancer therapy may be dangerous for patients

    Identification of an autoantibody panel to separate lung cancer from smokers and nonsmokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sera from lung cancer patients contain autoantibodies that react with tumor associated antigens (TAAs) that reflect genetic over-expression, mutation, or other anomalies of cell cycle, growth, signaling, and metabolism pathways.</p> <p>Methods</p> <p>We performed immunoassays to detect autoantibodies to ten tumor associated antigens (TAAs) selected on the basis of previous studies showing that they had preferential specificity for certain cancers. Sera examined were from lung cancer patients (22); smokers with ground-glass opacities (GGOs) (46), benign solid nodules (55), or normal CTs (35); and normal non-smokers (36). Logistic regression models based on the antibody biomarker levels among the high risk and lung cancer groups were developed to identify the combinations of biomarkers that predict lung cancer in these cohorts.</p> <p>Results</p> <p>Statistically significant differences in the distributions of each of the biomarkers were identified among all five groups. Using Receiver Operating Characteristic (ROC) curves based on age, c-myc, Cyclin A, Cyclin B1, Cyclin D1, CDK2, and survivin, we obtained a sensitivity = 81% and specificity = 97% for the classification of cancer vs smokers(no nodules, solid nodules, or GGO) and correctly predicted 31/36 healthy controls as noncancer.</p> <p>Conclusion</p> <p>A pattern of autoantibody reactivity to TAAs may distinguish patients with lung cancer versus smokers with normal CTs, stable solid nodules, ground glass opacities, or normal healthy never smokers.</p

    DNA methylation on N6-adenine in mammalian embryonic stem cells

    Get PDF
    It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N6-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N6-methyladenine. An increase of N6-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N6-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (6 million years old) L1 elements. The deposition of N6-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N6-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N6-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes

    Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Hymenolepis microstoma </it>(Dujardin, 1845) Blanchard, 1891, the mouse bile duct tapeworm, is a rodent/beetle-hosted laboratory model that has been used in research and teaching since its domestication in the 1950s. Recent characterization of its genome has prompted us to describe the specific strain that underpins these data, anchoring its identity and bringing the 150+ year-old original description up-to-date.</p> <p>Results</p> <p>Morphometric and ultrastructural analyses were carried out on laboratory-reared specimens of the 'Nottingham' strain of <it>Hymenolepis microstoma </it>used for genome characterization. A contemporary description of the species is provided including detailed illustration of adult anatomy and elucidation of its taxonomy and the history of the specific laboratory isolate.</p> <p>Conclusions</p> <p>Our work acts to anchor the specific strain from which the <it>H. microstoma </it>genome has been characterized and provides an anatomical reference for researchers needing to employ a model tapeworm system that enables easy access to all stages of the life cycle. We review its classification, life history and development, and briefly discuss the genome and other model systems being employed at the beginning of a genomic era in cestodology.</p

    Recent Advances in Our Understanding of the Role of Meltwater in the Greenland Ice Sheet System

    Get PDF
    Nienow, Sole and Cowton’s Greenland research has been supported by a number of UK NERC research grants (NER/O/S/2003/00620; NE/F021399/1; NE/H024964/1; NE/K015249/1; NE/K014609/1) and Slater has been supported by a NERC PhD studentshipPurpose of the review:  This review discusses the role that meltwater plays within the Greenland ice sheet system. The ice sheet’s hydrology is important because it affects mass balance through its impact on meltwater runoff processes and ice dynamics. The review considers recent advances in our understanding of the storage and routing of water through the supraglacial, englacial, and subglacial components of the system and their implications for the ice sheet Recent findings:   There have been dramatic increases in surface meltwater generation and runoff since the early 1990s, both due to increased air temperatures and decreasing surface albedo. Processes in the subglacial drainage system have similarities to valley glaciers and in a warming climate, the efficiency of meltwater routing to the ice sheet margin is likely to increase. The behaviour of the subglacial drainage system appears to limit the impact of increased surface melt on annual rates of ice motion, in sections of the ice sheet that terminate on land, while the large volumes of meltwater routed subglacially deliver significant volumes of sediment and nutrients to downstream ecosystems. Summary:  Considerable advances have been made recently in our understanding of Greenland ice sheet hydrology and its wider influences. Nevertheless, critical gaps persist both in our understanding of hydrology-dynamics coupling, notably at tidewater glaciers, and in runoff processes which ensure that projecting Greenland’s future mass balance remains challenging.Publisher PDFPeer reviewe
    corecore