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Abstract

The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and
diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that
each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for
developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines
‘‘marker states’’ based on all possible patterns of high and low values among a panel of markers. Each marker state is
defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies.
MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that
yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating
pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS
provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for
diverse applications.
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Introduction

The development of accurate biomarkers is increasingly

important with the growth of molecular and personalized

medicine [1]. Biomarkers are needed for diverse areas such as

risk assessment, early detection, differential diagnosis, disease

staging and prognostication, treatment selection, and treatment

monitoring [1,2]. The development of cancer drugs that are

targeted to specific molecules is now generally accompanied by the

development of companion diagnostic biomarkers that can select

the patients most likely to benefit from the drug or can monitor the

efficacy of the drug [3,4]. A biomarker can consist of any

measurable physical quantity, such as cell counts or nodal status,

but modern efforts at biomarker development are mainly focused

on specific molecules within the classes of DNA, RNA, proteins,

carbohydrates, lipids, and metabolites. Molecular entities may

provide more objectivity and accuracy than traditional modes of

evaluation, since specific molecules may be functionally involved

in the mechanism of the pathology.

A challenge in the development of molecular biomarkers arises

from the diversity between people in the molecules that are present

in disease. Because of variation between people in genetics,

environment, and disease status, any single molecular biomarker

usually does not provide an accurate diagnosis for every individual.

An example is prostate specific antigen, which is routinely used to

screen for prostate cancer, but is frequently elevated in non-

cancerous conditions and not elevated in some cancers [5]. A

common approach for addressing this challenge is to use multiple

molecular biomarkers together in a single biomarker panel [6].

The rationale for that approach is that the diversity between

people can be accounted for through multiple biomarkers, each of

which contributes information for a particular subset of the

population. The potential for improved accuracy of combination

biomarkers over single biomarkers has been demonstrated in

numerous cases.

A critical consideration in the development of combination

biomarkers is how individual markers should be selected and what

rules should be used in bringing them together. The concept of

using multiple factors to model and predict classes has been

extensively studied in many different fields, and many systems

have been developed. In the field of biomarker discovery,

frequently used techniques are recursive partitioning, linear

discriminant analysis, and logistic regression [6,7]. All have been

used to search for combinations of biomarkers for various types of

cancer, including lung [8,9,10], prostate [8,11], breast [8],

colorectal [8], and gastric [8] cancers. Recursive partitioning

provides a straightforward classification method and can function

despite missing data values. Additionally, though the selection of

markers can be unstable with certain data sets [12], techniques

exist for optimizing this procedure [13,14]. Linear discriminant

analysis is robust but is limited by its assumption of a normal data

distribution and equal class covariance [15], which are difficult
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requirements to meet in a clinical setting. Logistic regression is

able to capture the scalar nature of many factors [16] but may not

accurately model sharp distinctions between patient subclasses.

Each has its own strengths and limitations when applied to the

development of a biomarker panel [16].

Here we present an alternative method for developing

biomarker panels, called Marker State Space (MSS). MSS is

designed with the recognition that subclasses of patients can have

completely distinct molecular characteristics, as observed with

several cancers [17,18,19]. To account for divergent subgroups,

MSS allows distinct ‘‘states’’ to exist within either the cases

(patients with disease) or the controls (unaffected subjects). A state

refers to the pattern of high and low values among a set of

markers, and the state space is the set of all possible patterns. By

defining certain states as case states and others as control states, all

subclasses of molecular diversity are encompassed within a set of

markers. This method is distinguished from other methods of

classifier development by its systematic categorization of all

possible patterns of biomarker levels using binary (high or low)

values.

The purpose of the present study was to determine if the MSS

approach could identify robust multi-marker panels and molecular

subclasses of patients. We developed software for identifying

biomarker panels using MSS and tested the method in the

development of a biomarker panel for differentiating patients with

pancreatic cancer from those with a benign condition of the

pancreas such as pancreatitis. Such biomarkers are needed

because of the clinical similarity between those conditions and

the critical need to make accurate diagnoses as early as possible

[20]. The marker data were acquired using a method for detecting

glycan levels on the proteins captured by the antibody microarrays

[21,22,23], which has the potential for enhanced biomarker

performance relative to conventional protein detection [22,24].

We demonstrate that biomarker panels developed using MSS are

robust in cross validation and training-set/test-set analyses and

that MSS provides a novel approach for identifying patient

subclasses based on marker states.

Experimental Section

Biological reagents
The antibodies and proteins were purchased from various

sources (Table S1). The antibodies were purified by dialysis (Slide-

A-Lyzer, Pierce Biotechnology, Rockford, IL) against PBS buffer

followed by ultracentrifugation. The concentration of each

antibody was adjusted to 250 mg/ml prior to printing. The

integrity and purity of each antibody was confirmed by SDS-

PAGE under reducing and non-reducing conditions. The manu-

facturers characterized the specificities and optimal applications of

most of the antibodies, and we performed Western blot and

dilution series analyses for a subset of them [25,26]. Antibody

biotinylation was performed using EZ-Link sulfo-NHS-LC-biotin

(sulfosuccinimidyl-6-(biotinamido) hexanoate (Pierce Biotechnolo-

gy, Rockford, IL).

Plasma samples
Plasma samples (using EDTA as the anti-coagulant) from the

University of Pittsburgh School of Medicine were collected from

pancreatic cancer, pancreatitis and healthy subjects. Early-stage

cancer was defined as stages I and II, and late-stage cancer was

defined as stages III and IV. The pancreatitis patients were a

mixture of chronic and acute. The control subjects were healthy

with no evidence of pancreatic, biliary or liver disease. The

samples at each site were collected using a standard operating

procedure based on the serum and plasma protocols from the

Early Detection Research Network. All samples were stored at

280uC and sent frozen on dry ice. Each aliquot had been thawed

no more than three times before use.

Ethics statement
All sample collection and research was conducted under

protocols approved by the Institutional Review Boards at

Evanston Northwestern Healthcare, the University of Pittsburgh

School of Medicine, and the Van Andel Research Institute.

Written, informed consent was obtained from all participants in

the study.

Antibody-array assays
Antibody microarrays were prepared to detect glycan levels on

captured proteins and glycans. A piezoelectric non-contact printer

(2470 Arrayer, Aushon Biosystems, Billerica, MA) was used to spot

,350 pl of each antibody solution on the surfaces of ultrathin

nitrocellulose-coated glass microscope slides (PATH slides, GenTel

Biosciences, Madison, WI). Forty-eight identical arrays were

printed on each slide with each array consisting of 16–48 different

antibodies as well as control immunoglobulins from several species

printed in triplicate. A wax border was imprinted around each of

the arrays to define hydrophobic boundaries (SlideImprinter, The

Gel Co., San Francisco, CA). The printed slides were stored at 4

uC in a desiccated, vacuum-sealed slide box until use.

Antibody-array assays were performed to measure glycan levels

on either captured proteins or captured glycans (Fig. S1). Serum

samples were diluted with PBS buffer containing 0.1% Brij, 0.1%

Tween 20, and 50 mg/mL protease inhibitor mixture (Roche

Applied Science, Indianapolis, IN). A blocking solution consisting

of final concentrations of 400 mg/mL goat, mouse, and sheep IgG;

400 mg/mL chicken IgY; and 800 mg/mL rabbit IgG was included

in each serum or plasma sample to reduce nonspecific binding to

the printed antibodies. Slides were blocked with 7mL PBS with

0.5% Tween 20 (PBST0.5) and 1% BSA for 1 hr at room

temperature with gentle shaking. The slides were washed in three

changes of PBST0.5 for 3 min each with rocking. Six microliters of

each sample solution were incubated on each array overnight at

4uC. The slides were washed in three changes of PBST0.1 for 3

min each with rocking. Captured antigens were detected with

biotinylated antibodies at a concentration of 3 mg/mL followed by

incubation with 2 mg/mL streptavidin-phycoerythrin (Roche

Applied Science, Indianapolis, IN) using incubation and wash

conditions as above. The slides were scanned for fluorescence

emission at 532 nm using a microarray scanner (LS Reloaded,

Tecan, Männedorf, Switzerland). All arrays were scanned

concurrently at a single laser power and detector PMT gain

setting.

Image data were quantified using GenePix Pro 5.1 (Molecular

Devices, Sunnyvale, CA). The net fluorescence signal was

calculated by subtracting the median local background surround-

ing each spot from the median intensity of the corresponding spot.

The signal intensities from replicate antibody measurements

within the same array were averaged (geometric mean). Antibodies

were removed from subsequent analysis that gave low signals over

most of the samples, defined as ,10% of samples giving signal at

least two-fold higher than the signal in the negative control array

(incubated with PBS instead of plasma).

Marker State Space program
The exhaustive marker search and selection algorithm has been

implemented in C/C++ using standard libraries and tested on

Linux and Mac OS platforms. The program exhaustively analyzes

Marker State Space
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all combinations of three markers, and all possible combinations of

thresholds for each marker within each group of three, to

determine a sensitivity and specificity for each combination. The

user specifies the step size for scanning through the thresholds and

the minimum specificity and sensitivity that is required for a

marker combination to be included in an output file. The program

also performs 10-fold cross validation and returns results from

each of the 10 splits of the analysis. Details of this procedure are

provided below. The software is available on request to the

authors.

Details of the marker selection program and procedures
The program first carries out a training process on all of the

sample data (‘‘full train’’) for all possible combinations of three

markers. For each marker, the program tests all possible thresholds

within that marker’s range of data values. The level of detail with

which this process is carried out can be customized using the

‘‘threshold step.’’ This variable sets the interval between successive

thresholds in the scanning process. For example, if a step is set at

0.5, a marker with log fluorescence values ranging from 1.25 to

3.25 will be tested with the thresholds of 1, 1.5, 2, 2.5, 3, and 3.5.

The threshold step can be increased to optimize the speed of the

program (as might be desired with a very large set of data) or it can

be decreased to achieve a greater level of detail in the results.

Once finished with the full train the program moves on to a 10-

fold cross validation testing process. The samples are randomly

divided into ten groups, or ‘‘splits,’’ of equal (or as close to equal as

possible) number. Data for nine of the ten groups are compiled

and used for training, examining all possible combinations of three

markers at all thresholds (using the same thresholds for each

marker that were used in the full train). The panels meeting or

exceeding a user-defined minimum performance are subsequently

tested against the remaining tenth split, where their accuracies are

recorded. This is repeated ten times, with each split serving as the

test set exactly one time.

Upon completion the program generates several text files; a

series of files for each split and for the full train. Almost all of the

information contained in these is compiled into two summary files.

A ‘‘final report’’ lists every panel generated (that met sensitivity/

specificity cut-offs), along with its sensitivity/specificity in the full

train, accuracy in each split (for any splits in which a panel did not

meet minimum performance N/A is reported in place of

accuracy), and average accuracy across the splits. A ‘‘detailed’’

file contains the classification rules, with a breakdown of the

samples populating each, for every panel that met the sensitivity/

specificity cut-offs. The remaining output files contain more details

regarding the ten splits, such as the samples used in each.

The strategy we developed for selecting the most robust marker

panel begins by sorting through the ‘‘final report,’’ opened as a

Microsoft Excel spreadsheet. The list of panels is trimmed to

include all the panels that tie for first or second best performance

in any of the ten splits. Using this trimmed list, the number of

appearances of each unique combination of three markers is

counted. This count represents the number of different thresholds

at which each set of three markers appeared as a top panel. The

ability of a panel to achieve high accuracy at several unique sets of

thresholds is an indicator of robustness, or insensitivity to slight

variations in sample data. A high average accuracy in the ten splits

is also an indicator of robustness, and so an average of each panel’s

average in the splits is calculated. Count and average accuracy in

the splits are compiled for each combination of three markers, and

the marker panel that performs best between the two categories is

selected for further validation.

Results

The Marker State Space method
The Marker State Space (MSS) method operates on a binary

system in which each individual marker is either high (1) or low (0),

based on a threshold for that marker (Fig. 1A). The state space is

the combinations of 1s and 0s that are possible for a certain

number of markers. A panel of two markers has four possible

states: 0,0; 0,1; 1,0; and 1,1; and a panel of three markers has eight

possible states: 0,0,0; 0,0,1; 0,1,0; 0,1,1; 1,0,0; 1,0,1; 1,1,0; and

1,1,1 (Fig. 1B). (Panels with more markers would have 2n possible

states, n being the number of markers.) A given sample occupies

exactly one state, depending on its pattern of high and low values

for each marker. In order to classify samples, each state is

designated as either a ‘‘case’’ state or a ‘‘control’’ state. For

example, in a two-marker panel, the state 0,0 could indicate

control samples, and the states 0,1; 1,0; and 1,1 could indicate case

samples (Figs. 1C and 1D).

The discovery of biomarker panels based on this classification

system requires a method for selecting the members of the marker

panel, the thresholds for each marker, and the state rules (the

designation of which states are cases and which states are controls).

These three factors, the markers, the thresholds, and the state

rules, are related to each other, so that changes in one might affect

the optimal values for the other two. An approach to selecting the

thresholds and state rules that best discriminate two groups of

samples is illustrated in Figure 2 for two markers. For each

individual marker, several test thresholds are applied to convert

the data to 1s and 0s (Fig. 2A). To determine which thresholds

work best together between the markers, all nine possible

combinations could be examined (Fig. 2B). For each of these

combinations, we can assign certain states to indicate cases and

other states to indicate controls. A simple approach to making

those assignments is to count how many case and control samples

populate each state, and then make the assignment accordingly

(Fig. 2B). For example, if state 0,1 is populated by six control

samples and only two case samples, the state would be assigned to

indicate controls. Once the assignment is made for each state, all

samples in each state are classified according to the assignments. A

sensitivity and specificity can be calculated based on how many

case and control samples were correctly classified.

The specificities and sensitivities of each of the combinations of

thresholds can be compared to determine which combination gave

the best discrimination between cases and controls (Fig. 2B). In the

example of Fig. 2, the use of threshold 2 for Marker 1 and

threshold 2 for Marker 2 gave perfect classification of the cases and

controls, but all of the other combinations of thresholds gave some

misclassifications.

The next level of selection occurs when data from multiple

candidate biomarkers are available. For example, when collecting

data from antibody microarrays, measurements from dozens of

antibodies might be acquired. To find the combination of markers

that work well together, a combinatorial search is required to test

the performance of various groupings of markers. For example, a

search for a two-marker panel among a dataset containing many

different markers could function by first testing Marker 1 with

Marker 2, covering all combinations of thresholds, then testing all

combinations of thresholds using Marker 1 with Marker 3, next

Marker 1 with Marker 4, etc. For a three-marker panel, many

more combinations are possible.

Because of the significant computation required to explore the

combinations of markers and thresholds that give the best

biomarker performance, we developed software to perform that

search. The initial version of the program was designed to search

Marker State Space
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for panels of three markers. This choice was made to keep down

the computation time and to gain more information about the

performance of the method with relatively simple panels. The user

may select the step size for scanning through the thresholds for

each marker, using linear steps through thresholds over log-

transformed data. The user also may select the minimal levels of

performance for a marker panel to be included in an output file.

Additional details of the operation and output of the software are

provided in the methods section.

MSS applied to the selection of a biomarker panel
The MSS method was applied to the discovery of a plasma

biomarker panel that could accurately distinguish cancer patients

from pancreatitis patients. Antibody microarray measurements

were acquired from 197 plasma samples, comprising 121 from

pancreatic cancer patients and 76 from pancreatitis patients. We

used a technique in which glycan levels are probed on the proteins

captured by antibody microarrays [21,22,23], owing to the

potential for enhanced biomarker performance relative to

conventional protein detection [22,24]. Each plasma sample was

incubated on an array containing 36 different capture antibodies

and control antibodies (Table S1), and the captured proteins were

probed with an anti-glycan antibody (Fig. S1). The capture

antibodies were chosen to target glycoproteins and glycan epitopes

that potentially have altered abundance in pancreatic cancer,

based on literature sources and our own previous research

[22,27,28,29,30,31]. Eight different anti-glycan detection antibod-

ies were used on each sample in individual arrays. The detection

antibodies targeted the CA 19-9 antigen (a polysaccharide called

sialyl-Lewis A) and related glycans such as Lewis blood group

structures and glycans from the ABO blood group system. These

glycans were chosen to determine whether other specific glycans in

additional to the CA 19-9 antigen are elevated in particular cancer

patients. Because each combination of capture antibody and

detection antibody makes a unique assay, the eight arrays for each

sample resulted in 288 (368) total capture-detection pairs and

candidate marker assays for each sample.

Before beginning the marker selection process, we culled the

data to remove the positive and negative control antibodies and

the assays that gave very weak signals over all the samples (see

methods section for criteria). A resulting set of 127 capture-

detection pairs was used in the subsequent analysis. The raw

fluorescence values were log transformed (base 10), which

converted the values from the 16-bit range of 0 to 65,535 to a

range of 1 to 4.82. The MSS program scanned through thresholds

over that range for each marker using a step of 0.2. This step size

was selected to balance the competing factors of processing time

and detail in the analysis. A comprehensive search of all

combinations of markers and all thresholds for each marker

uncovered a three-marker panel that had an accuracy (rate of

correct calls) of 89.9%, with a sensitivity of 89.3% and a specificity

of 90.8%. This performance is similar to that achieved by a variety

of other methods for developing multimarker classifiers (Table 1).

Cross validation is an important tool for estimating the

performance of a biomarker panel in future samples. A panel is

built from a subset of the available samples and then applied to the

remaining samples. That process can be repeated with several

different divisions of training sets and test sets. The average of the

performance of each biomarker panel on the test sets of samples

gives a reliable indicator of the robustness of a panel that can be

derived from the existing data. Cross validation was applied to the

sample set using the MSS method. Ten-fold cross validation was

used, meaning that the samples were divided into ten parts, and

for each iteration, a biomarker panel was built from nine parts and

applied to the tenth. The average accuracy of panels derived from

MSS was 84.7%, only slightly lower than the performance on the

entire data (Table 1). The fact that performance held up well in

the cross-validation test sets indicates good potential for continued

accuracy in future samples. This performance was similar to that

achieved by logistic regression (Table 1).

Next we sought to investigate more deeply the performance of a

single panel in a training set and a test set. Two thirds of all the

available sample data were used for a training set (to develop a

panel), and the remaining one third was set aside as a test set (to

Figure 1. Assigning patient classes and classifying marker
states. (A) Thresholding the data. Representative data for 21 samples
are presented, in which each point represents a patient sample
measurement for Marker 1 (left) or Marker 2 (right). A threshold (dashed
line) was applied to each marker. Values above the threshold are
converted to 1 and values below the threshold are converted to 0. (B)
Possible states. Each column represents a unique state for panels of 1, 2,
or 3 markers. (C) Determining marker states for each patient. The data
from both Marker 1 and Marker 2 are presented for each of the 21
patients, along with their respective thresholds (horizontal lines). The
thresholded data are below the column graph. Each sample has a
particular marker state (0,0; 0,1; 1,0; or 1,1). (D) State classification. Each
state is classified as either case or control based on whether cancer or
non-cancer samples have a greater number of occurrences in that state.
The ‘‘true positives’’ are the cancer samples that occupy case states, and
the ‘‘true negatives’’ are the non-cancer samples that occupy control
states. These values are used to calculate the sensitivity and specificity
for the panel.
doi:10.1371/journal.pone.0065905.g001

Marker State Space
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test the panel). The two sets had equivalent percentages of cases

and controls. We used the results from cross validation analysis on

the training set to develop a candidate biomarker panel. We

reasoned that the most robust panel would have nearly the best

performance in each of the 10 iterations in cross validation and

that it would give good performance at many different thresholds

for each of the markers in the panel. The three-marker panel that

showed the best performance by these considerations was CA19-9

(Ab1)-CA19-9 (Ab1), Blood group A-Blood group B, and CA19-9

(Ab2)-CA19-9 (Ab1). (Each marker is defined by a capture

antibody and a detection antibody, indicated before and after the

dash.) We previously showed that the two CA 19-9 antibodies used

Figure 2. Determining optimal thresholds for a two-marker panel. (A) Scanning thresholds. Three different thresholds are depicted for
Marker 1 (left) and Marker 2 (right), with the resulting conversion to 1s and 0s for each threshold, followed by the sensitivities and specificities for
each marker at each threshold. (B) Determining the best combination of thresholds. All possible combinations of thresholds were assembled for the
two-marker panel, resulting in nine combinations. Based on the results from panel A, the numbers of cancer and non-cancer samples that occupy
each state were determined for each combination, from which the sensitivity and specificity could be calculated for each combination. The
combination of thresholds giving the best performance (in this case threshold 2 for Marker 1 and threshold 2 for Marker 2) is selected.
doi:10.1371/journal.pone.0065905.g002

Marker State Space
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here, Ab1 and Ab2, have differing and complementary specificities

[32], which provides a molecular understanding of their inclusion

together in a biomarker panel.

Before applying this panel to the test set, we used the entire

training set data to find the thresholds and state rules that gave the

best performance. The panel achieved 88.9% sensitivity, 86.0%

specificity, and 87.8% accuracy (Table 1). State 4 (0,1,1), state 6

(1,0,1), state 7 (1,1,0), and state 8 (1,1,1) were mainly occupied by

case samples and therefore were classified as case states (Fig. 3A).

State 1, state 3, and state 5 were classified as control states. State 2

(0,0,1) was not occupied by any sample but was classified as a

control state due to its similarity to the other control states. These

state rules can be condensed into a simplified rule that if a sample

is elevated in any two or more of the markers, it is called a ‘‘case’’

(Fig. 3A).

The application of this three-marker panel to the test set

achieved sensitivity of 85%, specificity of 96.2%, and accuracy of

89.4% (Fig. 4A). This performance held up well relative to the

training set (even slightly improved) and was similar to that

achieved by logistic regression (Table 1). The three-marker panel

selected by logistic regression shared two markers in common with

the MSS panel, and nearly all the samples were classified

equivalently by MSS and logistic regression (data not shown).

These analyses show that the MSS method can produce robust

multi-marker panels that have consistent performance in cross

validation and training set/test set analyses.

Subclasses defined by marker states
MSS enables a visualization of the marker states within the case

and control samples and the contributions of each marker to the

classifications, which may give insights into subclasses of patients

based on marker states. A view of the marker states of each sample

shows the relative proportions of the states (Figs. 3B and 4B).

Among the control samples, most of the true negatives were in

state 3 and state 1, with a small number in state 5, and the few false

positives were in state 8, state 7, and state 6. The true positive

samples were mainly in states 8 and 6, with a smaller number in

states 7 and 4, while the false negative samples were in states 3, 1,

and 5 (Figs. 3B and 4B). The relative occupancy of the states was

similar between the training and test sets (Fig. 5), which suggests

that these states would be consistent over a larger population.

We further tested the significance of these states by looking at

the relative proportion of different sample types within each state.

The control samples comprised both healthy subjects and patients

with pancreatitis. We found that the control samples occupying the

case states (the false positive samples) were predominantly from

pancreatitis patients (Fig. 5), which is consistent with pancreatitis

patients displaying more similarities to cancer patients than

healthy people. In a similar way, the false negative samples

primarily were from early-stage patients (stages I and II), rather

than late-stage patients, consistent with an expected greater

similarity of those patients to healthy people. Furthermore, we

observed that state 6 seemed to have a higher percentage of late-

stage cancer relative to state 8, as did state 1 relative to state 3.

State 6 (1,0,1) differs from state 8 (1,1,1) in that the Blood group A-

Blood group B marker is low, similar to the difference between

state 1 (0,0,0) and state 3 (0,1,0). The proportions were observed in

both the training and test sets, although their significance would

have to been determined in larger studies. The differences in

composition between states demonstrate the potential for using

MSS to identify molecular subclasses with distinct phenotypic

characteristics.

Discussion

New biomarkers are needed in a wide range of applications.

Because of the diversity between people and the possibility of

subclasses of disease, any single biomarker may not have the

performance needed to be clinically effective. The use of multiple

markers together in a panel is a good approach for dealing with

patient and disease diversity. Here we present a new method for

forming biomarker panels. Marker State Space is built on the

concepts that a set of all possible relationships (the state space)

exists among a given set of markers, and that certain states are

characteristic of disease. If we can accurately represent the

underlying biological relationships across cases, robust biomarker

performance should result. The method could be particularly

valuable when the markers that define one subgroup are different

from those that define another subgroup, or when the patterns of

expression among a common set of markers are different between

subgroups. MSS handles such diversity through the definition of

distinct and independent states among patients.

We demonstrated that MSS can identify markers panels with

robust performance in both cross validation and training set-test

set analyses. These analyses showed that the selected panels were

not ‘‘over fit,’’ or simply descriptive of only the training set data.

The performance was similar to other methods of developing

multi-marker classifiers. The fact that performance was similar

between all the methods tested (Table 1) likely reflects the facts

that the sample size is not large enough to reveal true differences in

performance and that a limited amount of information was

contained in these markers. The CA 19-9 marker, the current best

individual marker for pancreatic cancer [33], dominated the

classification, and the additional markers added a small amount of

accuracy to CA 19-9, similar to previous research [30]. It is likely

that no classification method will be best in every application; the

optimal classification method will depend on the relationships in

the data. The advantage of one method over another may appear

only in the analysis of very large datasets. Here we wanted to test

whether MSS could provide robust classification that was

comparable to other methods and whether MSS had other

practical advantages, as discussed below. The data show that MSS

can provide classification accuracy on par with other, established

methods, and that it may have advantages in certain settings.

The classification method bears resemblance to other methods

such as recursive partitioning and k-nearest neighbors, but with

some important distinctions. Recursive partitioning defines ‘‘case’’

states and ‘‘control’’ states based on discreet marker patterns, but

because of the sequential searching using only the best marker at

each division, the method may miss panels of markers that

individually do not provide discrimination information but rather

only in combination with specific other markers. K-nearest

neighbors shares with MSS the classification of samples based

on a vector of markers. The k parameter defines the size of the

subset of nearest neighbors to which an unknown sample is

matched, which presents a difficulty with unknown sizes of

subclasses. MSS makes no assumption about nearest neighbors (a

subclass of only one sample could be found). Another important

characteristic of MSS relative to other classification methods is its

suitability to clinical implementation, as it limits the number of

markers and uses simple classification rules that do not require

complex calculations. The use of small panels limits the cost of the

test and reduces technical complexity, so that any laboratory that

currently runs single assays could adopt a three-marker panel. The

thresholding of each marker measurement and classification of

each sample based on the pattern of three markers could be

immediately implemented without special computation.
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The ability of MSS to identify patient subclasses based on

marker states was shown in two ways. First, the relative occupancy

of the marker states was consistent between the training and test

sets (Fig. 5), suggesting that these states are a natural feature of the

population of cancer patients, rather than a random observation.

Second, we observed differences in patient composition between

the states (Fig. 5), suggesting real biological or clinical differences

between the states. The high proportion of control patients with

benign pancreatic disease in the ‘‘case’’ states and the high

proportion of early-stage cancer patients in the ‘‘control’’ states

explained the origin of the false positive and false negative

identifications, respectively. These subsets of patients may be

fundamentally different from the correctly classified patients, and

additional markers may be necessary for their proper classification.

These types of analyses can be used to suggest molecular

classifications of patient subgroups and guide strategies for further

exploration of molecular characteristics.

The composition of the marker panels also gives information

about the states. The panel selected here used two different assays

for the CA 19-9 antigen. We previously showed that these two

Figure 3. Training set marker states and patient classifications. (A) Training set marker states. The eight possible marker states for the three
indicated markers are shown, followed by the numbers of case and control samples in each state and the categorization of each state. *State 2 was
unoccupied by categorized as a control state because of similarity to other control states. The lower panel shows condensed marker states, in which
X indicates either 0 or 1. (B) Individual sample classifications. Each column represents an individual patient sample, and the first three rows indicate
results from the indicated markers. A yellow square indicates the sample was above the threshold for that marker, and black indicates below. The
blue lines indicate the state in which each sample was classified.
doi:10.1371/journal.pone.0065905.g003

Marker State Space

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e65905



antibodies have slightly different and complementary specificities

[32], similar to previous studies of antibodies directed against

glycan epitopes [34,35], so their use together in a single panel

could be expected to be beneficial. These two markers were

complemented by the detection of the blood group B epitope on

proteins captured by an antibody against blood group A (signified

Blood group A-Blood group B). Patients in state 4 or state 7 were

elevated in this marker and in only one of the CA 19-9 markers. A

relatively small number of patients were in state 4 or 7 (Fig. 5),

especially in the test set, but the appearance of these states suggest

that certain patients who do not fully elevate the CA 19-9 antigen

produce elevated levels of blood group A or blood group B

antigens. The ABO blood group antigens are carbohydrate

structures that are related to the carbohydrate structure defined

by the CA 19-9 antigen [36], so a biosynthetic shift from one to the

other in certain cancer patients would be possible. Additional

studies would be required to study the relationship between these

markers and the sources of variation between the patients.

The program and method could be further developed in various

ways. The software could be expanded to allow more detail in the

Figure 4. Test set marker states and patient classifications. The same marker panel, thresholds, and classification rules as shown in figure 4
were applied to the one-third of the total samples that were separated as a test set. (A) Occupancy of the marker states in the test set. (B) Individual
sample classifications in the test set.
doi:10.1371/journal.pone.0065905.g004
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analysis. For example, instead of using one threshold per marker to

convert each measurement to a 0 or 1, two thresholds could be

used, resulting in three levels (0, 1, or 2) for each measurement.

Such a modification might allow better modeling of situations in

which three biologically-driven levels of a marker might exist

across patients, such as abnormally low, moderate, and abnor-

mally high levels. In addition, the software could be modified to

select searches for panels including 3, 4, 5, or 6 markers, which

could allow for greater diversity in the markers that are selected

across patient states. The optimal panel size could be determined

using methods that have been worked out for other classification

algorithms, such as comparing change in performance from

training set to test set as panel size is increased. The continued use

of the method by additional researchers (the software is available

upon request) will provide more information about its perfor-

mance for biomarker research and reveal areas for further

development.

A limitation to implementing these approaches in the current

version of the software is the use of comprehensive searching to

find the best panel. Comprehensive searching allowed us to

identify the most robust panel for this data set, which represents an

advantage over approaches that trim data in a stepwise process, as

with recursive partitioning [16]. However, the run time for

comprehensive searches increases exponentially with the increase

in panel size or marker levels. The high search time might make

comprehensive searching impractical for large panels or for

datasets with many potential markers, as with gene expression

data. In this work we used small panels to reduce the chance of

overfitting, but to test the value of larger panels, alternate strategies

will be needed, such as developing an analytical understanding of

how to limit the search space or sampling the search space.

Sampling would cover the range of possible panels but not

comprehensively, thus running the risk of not finding the true

optimum. Limitations to the search space could be imposed to

allow comprehensive searching under constrained conditions. For

example, we could search only a subset of all possible states, such

as those with relatively simple classification rules. We demonstrat-

ed simplified classification rules in this work (Fig. 3A), reducing the

8 possible states for a 3-marker panel down to 6 states. In a similar

Figure 5. Composition of the states in the training and test
sets. The percentage of control samples (top panel) and case samples
(bottom panel) in each state is shown for both the training (dashed
columns) and test sets. Consistency between the training and test sets
in the relative occupancy between states is shown. The colors of the
bars indicate the composition of the subjects within each state. The
arrows indicate a high proportion of patients with benign disease
(pancreatitis) in the case states (top panel) and a high proportion of
early-stage cancer patients in the control state (bottom panel).
doi:10.1371/journal.pone.0065905.g005

Table 1. Comparison of performance between methods.

All Data (197 samples) 10-Fold Cross Validation*

Method Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

MSS 89.9% 89.3% 90.8% 84.7% – –

SVM 88.8% 88.4% 89.5% 87.3% 87.6% 86.8%

Logistic Regression 87.3% 89.3% 84.2% 87.3% 87.6% 86.8%

Naı̈ve Bayes 82.7% 77.7% 90.8% 82.7% 77.7% 90.8%

Neural Net 87.3% 88.4% 85.5% 85.3% 88.4% 80.3%

K-Nearest Neighbor 90.4% 90.9% 89.5% 85.3% 87.6% 81.6%

Training Set (131 samples) Test Set (66 samples)

Method Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

MSS 87.8% 88.9% 86.0% 89.4% 85.0% 96.2%

Logistic Regression 86.3% 87.7% 84.0% 92.4% 87.5% 100.0%

*The software did not calculate an average sensitivity and specificity for MSS in 10-fold cross validation because its does not separately calculate those parameters in
each cross validation split.
doi:10.1371/journal.pone.0065905.t001
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way, the 16 possible states for a 4-marker panel could be reduced

to a more manageable number of simplified states. It may be

possible to first find the simplified states by comprehensively

searching among smaller panels, and then to search for

combinations among more markers using just the simplified states.

These strategies will be explored as we further develop the use of

the method.

Another limitation of the current implementation of MSS in

comparison to some methods is that it cannot handle missing

values, because the classification of each sample requires a

complete, defined state. Approaches for dealing with missing data

[37] potentially could be developed for MSS, such as by

identifying partial states that are consistent with the observations

and predicting the likelihood of each complete state.

In summary, we anticipate that the MSS method will provide a

good complement to the existing approaches for developing

biomarker panels. The method may allow for an accurate

handling of subgroups within a population that have completely

divergent marker profiles, which may result in improved

performance over very large sample sizes. The simple computa-

tional process, involving the conversion of each measurement to

binary values followed by the classification of each sample based

on the marker state, should facilitate implementation in a wide

range of settings. Future applications of the method could

incorporate diverse data types, such as genotypes or clinical

features. Such data types may be particularly appropriate for the

MSS method because they indicate clear subgroups in popula-

tions.

Supporting Information

Figure S1 Antibody arrays with glycan detection. In this

example, three identical arrays containing three different antibod-

ies (AB1, AB2, and AB3) are incubated with plasma, and proteins

and captured according to the specificities of each antibody. Each

array is probed with a different detection antibody, AB4, AB5, or

AB6. The detection antibodies target specific glycan structures

attached to the proteins. The detection antibodies are tagged

(yellow circle) to allow measurements of their binding at each

capture antibody. Nine different combinations of capture

antibodies and detection antibodies are achieved

(PNG)

Table S1 Antibodies and reagents used in the micro-
array experiments.
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