6,958 research outputs found

    Stochastic interest rates in the aggregate life cycle of permanent income cum rational expectations model

    Get PDF
    An estimation of a life cycle cum rational expectations model that allows for uncertain future interest rates. The results show that the model is strongly rejected using post World War II U.S. data.Rational expectations (Economic theory) ; Consumption (Economics) ; Income

    A test of two views of the regulatory mechanism: Averch-Johnson and Joskow

    Get PDF
    A test of the Averech-Johnson and the Joskov models of the electric utility regulatory process.Electric utilities ; Industrial policy

    Ultrafast dynamics in the vicinity of quantum light-induced conical intersections

    Get PDF
    Nonadiabatic effects appear due to avoided crossings or conical intersections that are either intrinsic properties in field-free space or induced by a classical laser field in a molecule. It was demonstrated that avoided crossings in diatomics can also be created in an optical cavity. Here, the quantized radiation field mixes the nuclear and electronic degrees of freedom creating hybrid field-matter states called polaritons. In the present theoretical study we go further and create conical intersections in diatomics by means of a radiation field in the framework of cavity quantum electrodynamics (QED). By treating all degrees of freedom, that is the rotational, vibrational, electronic and photonic degrees of freedom on an equal footing we can control the nonadiabatic quantum light-induced dynamics by means of conical intersections. First, the pronounced difference between the the quantum light-induced avoided crossing and the conical intersection with respect to the nonadiabatic dynamics of the molecule is demonstrated. Second, we discuss the similarities and differences between the classical and the quantum field description of the light for the studied scenario

    Quantum Control with Quantum Light of Molecular Nonadiabaticity

    Full text link
    Coherent control experiments in molecules are often done with shaped laser fields. The electric field is described classically and control over the time evolution of the system is achieved by shaping the laser pulses in the time or frequency domain. Moving on from a classical to a quantum description of the light field allows to engineer the quantum state of light to steer chemical processes. The quantum field description of the photon mode allows to manipulate the light-matter interaction directly in phase-space. In this paper we will demonstrate the basic principle of coherent control with quantum light on the avoided crossing in lithium fluoride. Using a quantum description of light together with the nonadiabatic couplings and vibronic degrees of freedoms opens up new perspective on quantum control. We show the deviations from control with purely classical light field and how back-action of the light field becomes important in a few photon regime

    Non-adiabatic dynamics of molecules in optical cavities

    Full text link
    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules

    Directional Degradation of Spectralon Diffuser Under Ionizing Radiation for Calibration of Space-Based Sensors

    Get PDF
    Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensin

    Effects of Orthogonal Rotating Electric Fields on Electrospinning Process

    Full text link
    Electrospinning is a nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers with nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of a better control on the morphology of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30%30 \% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres. Applications can be envisaged in the fields of nanophotonic components as well as for designing new and improved filtration materials.Comment: 22 pages, 8 figure

    Dean flow-coupled inertial focusing in curved channels

    Get PDF
    Passive particle focusing based on inertial microfluidics was recently introduced as a high-throughput alternative to active focusing methods that require an external force field to manipulate particles. In inertial microfluidics, dominant inertial forces cause particles to move across streamlines and occupy equilibrium positions along the faces of walls in flows through straight micro channels. In this study, we systematically analyzed the addition of secondary Dean forces by introducing curvature and show how randomly distributed particles entering a simple u-shaped curved channel are focused to a fixed lateral position exiting the curvature. We found the lateral particle focusing position to be fixed and largely independent of radius of curvature and whether particles entering the curvature are pre-focused (at equilibrium) or randomly distributed. Unlike focusing in straight channels, where focusing typically is limited to channel cross-sections in the range of particle size to create single focusing point, we report here particle focusing in a large cross-section area (channel aspect ratio 1: 10). Furthermore, we describe a simple u-shaped curved channel, with single inlet and four outlets, for filtration applications. We demonstrate continuous focusing and filtration of 10 mu m particles (with > 90% filtration efficiency) from a suspension mixture at throughputs several orders of magnitude higher than flow through straight channels (volume flow rate of 4.25ml/min). Finally, as an example of high throughput cell processing application, white blood cells were continuously processed with a filtration efficiency of 78% with maintained high viability. We expect the study will aid in the fundamental understanding of flow through curved channels and open the door for the development of a whole set of bio-analytical applications
    corecore