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Quantum control with quantum light of molecular nonadiabaticity
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Coherent control experiments in molecules are often done with shaped laser fields. The electric field is
described classically and control over the time evolution of the system is achieved by shaping the laser pulses in
the time or frequency domain. Moving on from a classical to a quantum description of the light field allows one
to engineer the quantum state of light to steer chemical processes. The quantum field description of the photon
mode allows one to manipulate the light-matter interaction directly in phase space. In this paper we demonstrate
the basic principle of coherent control with quantum light on the avoided crossing in lithium fluoride. Using a
quantum description of light together with the nonadiabatic couplings and vibronic degrees of freedoms opens
up alternative perspective on quantum control. We show the deviations from control with purely classical light
field and how back-action of the light field becomes important in a few-photon regime.
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I. INTRODUCTION

Coherent control [1–7] has greatly contributed to the un-
derstanding of how photochemical reactions can be manipu-
lated and what the limits of controllability are. In a typical
optimal control experiment a short laser pulse drives optical or
infrared transitions aiming at optimizing a specific objective
such as the yield of a photochemical reaction. This can be
achieved by creating interference between light-induced path-
ways [8,9] or by steering wave packets in a desired direction
[10,11]. These control principles have been realized in optimal
control experiments and investigated theoretically by means
of optimal control theory. Given an input laser pulse of a fixed
temporal length one can then shape the pulse in the frequency
domain by changing the phase, the amplitude, and the polar-
ization of the frequency components in the pulse spectrum.
Thus in a classical description of light there are three vari-
ables for a single-frequency mode. However, in a quantum
description of light the behavior of a single-frequency mode
can be described by a variable number of Fock states and their
amplitudes and phase (and polarization). This description
leads to a wealth of control knobs for coherent control. The
quantum nature of light becomes relevant in the few-photon
regime. This regime can be reached either with low-intensity
beams or in a spatially confined field mode, such as in a
nanocavity.

In the latter situation the strong light-matter coupling can
be achieved by considering the molecules to interact with a
confined light mode of the microscale or nanoscale optical
cavities [12]. Such hybrid light-matter systems are then char-
acterized by the properties of the common light and matter
eigenstate and are called polaritons or dressed states.
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Over the past few years, polaritonic chemistry has be-
come an emerging field which provides a tool for modifying
and controlling the chemical structure and dynamics. Several
experimental [13–18] and theoretical [19–41] activities are
concentrated in this field since the pioneering experimental
work by the group of Ebbesen, when it was observed that
the strong light-matter coupling could change the chemical
landscapes and chemical reaction [13]. Among others it was
found that the strong coupling can modify the absorption
spectra [14,16,19,34] and the nonadiabatic dynamics [30–32];
the supermolecular polaritonic states provide very fast nonra-
diative energy transfer [16].

Coherent control with quantized light fields has been dis-
cussed from a fundamental point of view in Refs. [6,42], and
a generalized optimal control approach based on a quantum
description of light has been proposed by Gruebele [43].
Explicit quantum light coherent control applications that have
been proposed include the control of qubits in ion chains [44],
the control of two-photon transitions [45] in atoms, and its
application to spectroscopy [46,47]. In this paper we discuss
the basic opportunities for coherent quantum control that can
be achieved with typical quantum states of light, such as
Fock states, squeezed states, and coherent states, and apply
it to control of a nonadiabatic coupling. A study showing
the general differences between quantum and classical light
has been presented in Ref. [39]. Here, we demonstrate how
a single-photon mode, in quantum or classical description,
may be used to control the reaction outcome at the avoided
crossing in LiF and present a general coherent control concept
for quantum light. We begin by presenting the underlying
theoretical description of the coupled system of the molecule
and the cavity, followed by an introduction of the envisioned
control principle. Thereafter we present the results for the
control of the nonadiabatic dynamics of the LiF molecule and
a discussion of the different scenarios.
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II. THEORY

A. The Hamiltonian

For the interaction of the quantized light field with a two-
level system, we consider the full Rabi Hamiltonian [31,48],
which is given by

Ĥec = Ĥe + Ĥc + ĤI

= h̄ω0

2
(2σ̂ †σ̂ − 1) + h̄ωcâ†â + h̄g(â† + â)(σ̂ † + σ̂ ),

(1)

where He, Hc, and HI describe the electronic and photon
degrees of freedom, as well as the light-matter interaction.
Here, σ = |g〉〈e| acts on the |g〉 electronic ground state and
the |e〉 excited state, â(†) is the bosonic annihilation (creation)
operator of the photon mode, h̄ω0 = h̄(ωe − ωg) is the en-
ergy difference between the electronic states, and ωc is the
resonance frequency of the photon mode. The vacuum Rabi
frequency describing the light-matter coupling is

g = μegεc

2h̄
(2)

and depends on the transition dipole moment μge and on the
vacuum field given by

εc =
√

h̄ωc

V ε0
, (3)

where V is the quantization volume of the light mode. In
Eq. (1) we have kept the counter-rotating terms σ †â† and σ â.
This is required to describe the ultrastrong-coupling regime
where g is on the order of the transition frequency ω0.

To allow for a convenient numerical description of the
photon mode, we use displacement coordinates rather than
the basis of Fock states. This can be achieved by expressing
the annihilation operator in terms of its photon displacement
coordinates [30,48]:

â =
√

ωc

2h̄

(
x̂ + i

ωc
p̂

)
, (4)

with p̂ = −ih̄∂x. The coordinate x is a dimensionless coor-
dinate that is formally equivalent to a vibrational coordinate.
The coupled Hamiltonian from Eq. (1) then reads as follows:

Ĥec = h̄ω0

2
(2σ̂ †σ̂ − 1) − h̄2

2

∂2

∂x2
+ 1

2
ω2

c x̂2

+ g
√

2h̄ωcx̂(σ̂ † + σ̂ ). (5)

For molecules, the transition frequency ω0 and the transition
dipole moment μge become quantities that depend on the
internuclear separation R introducing nonadiabatic couplings
[31]. The total wave function is expanded in the adiabatic
states:

�(r, R, x) =
∑

k

�k (r; R)ψk (R, x), (6)

where r represents the electronic coordinates, R is the internu-
clear distance, and k runs over the molecular electronic states
(the 
1 ground and 
2 excited states of the LiF molecule
are considered in the present work). In the next step we

combine Eq. (5) with the nuclear Hamiltonian in the basis of
the adiabatic states; the Hamiltonian then reads

Ĥkl = δkl

(
− h̄2

2m

∂2

∂R2
+ V̂k (R) − h̄2

2

∂2

∂x2
+ 1

2
ω2

c x̂2

)

+ (1 − δkl )g(R)
√

2h̄ωcx̂

+ (1 − δkl )
1

2m

(
2 fkl (R)

∂

∂R
+ ∂

∂R
fkl (R)

)
, (7)

where m is the reduced mass of the nuclei, Vk (R) is the adia-
batic potential energy curve of the kth electronic state, and δkl

is the Kronecker delta. The first-order nonadiabatic coupling
matrix element fkl (R) = 〈k|∂R|l〉 describes the coupling at
the avoided crossing (k, l = 
1, 
2). For the sake of clarity
and to demonstrate the basic control possibility we neglect
the diagonal dipole moments, which would cause couplings
between purely vibrational states. In Eq. (7), the g(R) coupling
strength is often expressed in terms of a parameter χ which is
defined by the relation g(R) = χμkl (R)

√
ωc. This χ is applied

to characterize the coupling strength between the molecule
and the photon mode.

By quantizating the light field, the state of the field is
described by a wave function rather than the wave form of
the electric field. The vibrational coordinate and the photon
mode can now be treated on an equal footing. The mode of
the light field is treated like another vibrational mode with a
harmonic potential. In comparison the coupling term for the
classical light-matter coupling is

HI,class = −μgeE (t ), (8)

where E (t ) is the time-dependent electric field. The field
properties of the quantized photon mode and its time depen-
dence instead enter through the wave function rather than a
Hamiltonian term such as Eq. (8).

B. Nuclear quantum dynamics simulations

The multiconfigurational time-dependent Hartree
(MCTDH) method [49,50] has been applied to solve the
time-dependent Schrödinger-equation characterized by the
Hamiltonian in Eq. (7). The R degree of freedom (DOF)
was defined on a sin-DVR (discrete variable representation)
grid (NR basis elements for R = 0.846–21.16 Å). The photon
mode, x was described by Nx Hermite polynomials, Hm(x),
with m = 0, 1, . . . , Nx − 1. In the MCTDH wave-function
representation, these primitive basis sets (ξ ) are then
used to construct the single-particle functions (φ) whose
time-dependent linear combinations form the total nuclear
wave packet (ψ):

φ
(q)
jq

(q, t ) =
Nq∑
i=1

c(q)
jqi (t )ξ (q)

i (q), q = R, x,

ψ (R, x, t ) =
nR∑

jR=1

nx∑
jx=1

AjR, jx (t )φ(R)
jR

(R, t )φ(x)
jx

(x, t ). (9)

The actual number of basis functions were NR = 1069 and
Nx = 250–1550 for the vibrational DOF and photon modes,
respectively. The number of single-particle functions for both
DOF and on both the 
1 and 
2 electronic states ranged from
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10 to 44. The values of Nx and nR = nx were chosen depending
on the actual parameter values of the different quantum lights
so as to provide proper convergence. In order to minimize
unwanted reflections and transmissions caused by the finite
length of the R grid, complex absorbing potentials (CAP)
were employed at the last 5.29 Å of the grid. The time of the
propagation run was set as tfinal = 200 fs, hence the final 
1

state populations were calculated according to

P
1 = 〈ψ
1 (R, x, tfinal )|ψ
1 (R, x, tfinal〉. (10)

The initial wave function ψ (R, x, t = 0) is a product of the
electronic wave function, the vibrational ground state, and one
of the quantum light states described in Eqs. (12), (16), or
(18):

ψ (R, x, t = 0) = ψ
2 ⊗ ψv=0,
1 (R) ⊗ �c/s/sc(x). (11)

To calculate the potential energy, the dipole moment and
the nonadiabatic coupling (NAC) curves of the LiF molecule,
the MOLPRO [51] package was utilized. These quantities
were calculated a multi reference configuration interaction
method based on a compete active space wave function
(MRCI/CAS(6/12)/aug-cc-pVQZ). In particular, f
1
2 (R)
was computed by finite differences of the MRCI electronic
wave functions. The number of active electrons and molecular
orbitals in the individual irreducible representations of the
C2v point group were A1 → 2/5, B1 → 2/3, B2 → 2/3, and
A2 → 0/1. The calculated electronic structure quantities are
shown in Fig. 1.

C. Quantum states of light

In the following we introduce the quantum states of light
that are used in the subsequent calculations. Those states are
used as initial states for light field at time t = 0.

1. Coherent state

A coherent state is often regarded as the analog to a
classical coherent light field. The initial coherent state of the
photon mode is given by a Gaussian [52],

�c(x) =
(

ωc

π h̄

)1/4

exp

[
−

(
x − 〈x〉α

2�x

)2

+ i

h̄
〈p〉α (x − 〈x〉α )

]
, (12)

where its parameters for width, initial displacement, and
initial momentum are given by

�x =
√

h̄

2ωc
, (13)

〈x〉α =
√

h̄ωc

2
(α + α∗), (14)

〈p〉α = −i

√
h̄ωc

2
(α − α∗). (15)

The parameter α = |α|eiϕ determines the amplitude of the
displacement of the vacuum state. The phase ϕ is its phase
and corresponds to the carrier phase φ of a classical light
field. The expectation value of the photon number is given by
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FIG. 1. (a) Potential energy curves of the 
1 (red solid line) and

2 (green dashed line) electronic states of the LiF molecule applied
in the present work. (b) The corresponding transition dipole moment
and nonadiabatic coupling ( f
1
2 ) curves are shown by blue dashed
and black solid lines, respectively.

〈n〉 = |α|2. An uncoupled coherent state oscillates back and
forth along the photon displacement coordinate [see Fig. 2(a)]
while keeping its width constant.

2. Squeezed vacuum state

A squeezed vacuum state can be viewed as the ground state
of a harmonic oscillator with a modified width [53]:

�s(x) =
(

ωc

π h̄

)1/4

(cosh r + eiθ sinh r)−1/2

× exp

[
−

(
x

2�x

)2
]
, (16)

with the initial width

�x =
√

h̄

2ωc

(
cosh r + eiθ sinh r

cosh r − eiθ sinh r

)1/2

. (17)

Here r is the squeezing parameter determining the extent of
the squeezing and stretching of the Gaussian. The phase θ

is the squeezing phase and describes whether the Gaussian
is initially squeezed or stretched. Over time this state will
perform a “breathing motion” [see Fig. 2(b)]. The average
photon number of a squeezed state increases with the squeez-
ing parameter: 〈n〉 = sinh2 r.
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FIG. 2. Illustration of the interaction of a molecule with a co-
herent state (a) and a squeezed vacuum state (b) in a wave-packet
picture. The nuclear wave packet follows the gradient on the potential
energy curve from the Franck-Condon point (≈ 1.6 Å) towards the
avoided crossing (black circle at ≈ 8 Å).

3. Squeezed-coherent state

A squeezed-coherent state combines the idea of the
squeezed vacuum state and a coherent state and can be de-
scribed by [53],

�sc(x) =
(

ωc

π h̄

)1/4

(cosh r + eiθ sinh r)−1/2

× exp

[
−

(
x − 〈x〉α

2�x

)2

+ i

h̄
〈p〉α (x − 〈x〉α )

]
,

(18)

where �x is the same as in Eq. (17), and 〈x〉α and 〈p〉α are
the same as in Eqs. (14) and (15), respectively. Its expectation

value for the photon number is now determined by the dis-
placement and the squeezing parameter: 〈n〉 = |α|2 + sinh2 r.
Note that here both phases θ and ϕ determine the shape of the
initial wave packet.

D. Quantum control with quantum light

The control scenario that we compare in the following
corresponds to a continuous-wave classical laser field. To
demonstrate the basic principle and for the sake of clarity
we restrict the following discussion to a single mode. In a
single-frequency laser field with a fixed frequency, ωL, the
two control parameters available are the amplitude E0 and the
phase φ of the mode:

E (t ) = E0 cos(ωLt + φ). (19)

The quantum field mode introduced in Eq. (7) replaces the
classical field and is now represented by a photon-field wave
function and its (uncoupled) eigenfunctions, the eigenfunc-
tions of the harmonic oscillator (or Fock states). The control
variables are given by the initial state of the cavity mode and
thus constrained only by the size of its Hilbert space. The
interaction between two electronic states is then given by the
operator g(R)

√
2h̄ωcx̂ rather than μgeE (t ) and is controlled

by the photon-field wave function. In contrast to a classical
description of the electric field the molecule can now also
influence the state of the photon mode. This back-action be-
comes important in the few-photon regime and may create dis-
crepancies between quantum and classical descriptions, which
are otherwise expected to be equivalent. Absorption and stim-
ulated emission of single photons do not change the state of
the classical field. However, this assumption is only valid for
large photon numbers. In the limit of small photon numbers
the exchange of photons between the molecule and the field
mode can significantly alter the state of the field mode. The
perfect Gaussian shape of a coherent state, for example, may
end up severely distorted after interaction with the molecule
(for an illustration of the dynamics in a simple atomic system,
see Figs. S4, S5, and S6 in the Supplemental Material [54]).

The new control principles can now be explained in terms
of the phase space of the photon mode. Figure 2(b) illus-
trates the basic principle for a squeezed vacuum state in the
joint nuclear-photonic subspace. The initial state is a product
state made up of the vibrational ground state located at an
internuclear separation of 1.6 Å and a squeezed vacuum state
centered around a photon displacement coordinate of 0. As
the nuclear wave packet in the excited electronic state follows
the gradient towards the avoided crossing at 8.1 Å (which is
also the point of resonance), the photon wave packet executes
a breathing motion in x. By controlling the initial phase of
the squeezed state one can control the phase of the breathing
motion and thus control the strength of the interaction at the
point in time when the molecule reaches the point of reso-
nance. Since the interaction is proportional to x̂ the width of
the photonic wave packet at an instant in time will determine
the effective strength of the interaction, when the molecule
reaches the point of resonance. In Fig. 2(a) we illustrate the
same control principle but with a coherent state. Here we
can choose the initial momentum and displacement, which is
the equivalent of choosing the phase and the amplitude of a
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classical laser field. The displacement of the photon mode,
when the molecule reaches the resonance point, will decide
the strength of the interaction. Combining a coherent state and
a squeezed state yields a coherent squeezed state and we now
have the squeezing phase and the phase of the coherent state
as control parameters.

The squeezing motion and the motion of the coherent state
depend on the frequency of the light mode ωc. To effectively
use their motion to control the molecular degrees of freedom
the frequency of the photon mode needs to be on a time scale
similar to that of the nuclear time evolution.

III. RESULTS AND DISCUSSION

The initial state of the time evolution is a product state
of the photon mode [see Eqs. (12), (16), or (18)], the vi-
brational ground state of LiF, and the electronic state 
2.
This corresponds to an impulsive excitation with an ultrashort
laser pulse to trigger nuclear dynamics. The initial state of
the photon mode that enters the product state represents the
control parameters. In the following we use different initial
states for the photon mode to demonstrate the influence on the
branching of the nuclear wave packet at the avoided crossing
in LiF. The frequency of the cavity mode is chosen such that
it is in resonance with the molecule exactly at the avoided
crossing. Note that in Eq. (7) we have neglected the permanent
dipole moments. Since the frequency of the cavity mode is in
the infrared regime it would couple directly to the vibrational
motion through the permanent dipole moments. We leave the
investigation of this effect to future work and focus only on the
interaction with the electronic transition dipole moments. The
control objective is the population in the electronic ground
state 
1 after 200 fs, which is compared to the field-free
case. The most obvious choice as an initial state is a Fock
state. This has been already demonstrated for NaI in previ-
ous work [30]. Pure Fock states have the most resemblance
with classical light in terms of interaction and dynamics,
which has been demonstrated in Ref. [33]. In the case of a
two-level system their population dynamics are identical (a
demonstration is given in Fig. S5 in the Supplemental Material
[54]). Single Fock states do only offer the photon number n
as a control parameter but lack any form of phase control.
Consequently, Fock states are not considered here for control
purposes.

A. Coherent states and comparison with the classical state

First, we compare different coherent states with each other
and their classical counterparts. Coherent states are thought
of as a close resemblance to classical coherent light, since
their time-dependent electric field expectation value yields
the classical electric field [see Eq. (A5) in the Appendix].
However, the dynamics of the system only converge to a
classical behavior in the limit of large photon numbers (a
Fock state within the Jaynes-Cummings model resembles the
dynamics already for small photon numbers). In the regime
of small photon numbers the back-action of the molecule onto
the field mode causes a significant perturbation of the coherent
state. The initial state of the photon mode �c is now given by
Eqs. (13)–(15).
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FIG. 3. Final 
1 state populations for (a) coherent and
(b) squeezed vacuum initial states as a function of the initial phase
and the initial squeezing phase, respectively. In the case of the coher-
ent states (a), several initial average photon numbers are considered.
For comparison, the classical field description results are presented
by the black line where the electric field amplitude is determined
from Ec = χωcxmax. In the case of the coherent states the coupling
strength parameter is scaled according to χ/

√〈n〉. For the squeezed
vacuum initial states (b), four different squeezing parameters are
considered. In both panels ωc = 0.037 eV and χ = 0.01 are applied.
The horizontal dashed lines show the field-free final populations in
both panels.

In Fig. 3(a) the results for coherent states with 〈n〉 =
(1, 5, 13, 100) are shown (red, green, yellow, and blue curves,
respectively) alongside the result for a classical field (black
curve). The field-free case is denoted by the horizontal dashed
line. Here we use the coherent state phase ϕ and the classical
field phase φ as a control parameter. Their coupling strengths
are chosen such that the matrix elements of the light-matter
coupling are comparable in magnitude. A clear variation of
the final population (tfinal = 200 fs) with respect to the phase
can be observed. The coherent states show a phase-dependent
modulation depth of 0.2 for the single photon (〈n〉 = 1),
and the depths converge to 0.3 for large photon numbers
(〈n〉 = 100). The comparison with the classical field shows
a comparable phase-dependent modulation depth of 0.2 and
it differs in the total suppression of the final population.
Note that control with a classical field or a coherent state
enables suppression as well as enhancement of the final
population.
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TABLE I. Relation between the initial photon number (〈n〉), the minimum and maximum change in the photon number (�〈n〉), and the
minimum and maximum ground-state populations (P) after the reaction has occurred in the cases of both coherent light and squeezed light.
For the squeezed states the r squeezing parameters are also shown. The data used to create this table can be found in Figs. S1–S3 in the
Supplemental Material [54].

Coherent light

α 〈n〉 min. �〈n〉 ϕmin (π ) max. �〈n〉 ϕmax (π ) Pmin ϕmin (π ) Pmax ϕmax ()

1 1 −0.2 0.2 1 1.4 0.641 1.8 0.837 1.2√
5 5 −0.5 0.2 0.7 1.4 0.661 1.8 0.906 1.2√
13 13 −0.6 0.2 0.7 1.4 0.617 1.8 0.919 1.2

10 100 −0.6 0.2 0.7 1.4 0.620 1.8 0.926 1.2

Squeezed light

r 〈n〉 min. �〈n〉 θmin (π ) max. �〈n〉 θmax (π ) Pmin θmin (π ) Pmax θmax (π )

0.5 0.3 0.2 0 0.4 1 0.776 1.6 0.842 0.6
1.0 1.4 0.1 0 0.8 1 0.647 1.6 0.786 0.6
2.0 13.2 −0.4 0 3.2 1 0.387 1.6 0.604 0.6
3.0 100.4 −2 0 7 1 0.233 1.8 0.497 0.8

B. Squeezed vacuum state

Next, we compare squeezed states with different squeezing
parameters against each other. The initial state of the cavity
mode is given by Eqs. (16) and (17). This is a purely quantum
mechanical state of light, which cannot be represented by
classical light. In Fig. 3(b) the population in the 
1 state at the
final time tfinal is plotted against the squeezing phase for differ-
ent values of the squeezing parameter r and a constant value
for the coupling strength. The black dashed line in Fig. 3(b)
indicates the result of the photoreaction without the influence
of a cavity mode. For all values of r we see a clear influence of
θ on the final population. The result is a sinusoidal modulation
with respect to the squeezing phase. The modulation depth
increases with an increase of the squeezing parameter (values
in Table I), ranging from a difference of 0.066 in the final 
1

population to 0.26, for r = 0.5 and r = 3, respectively. Note
that with an increase of r the photon number 〈n〉 of the cavity
also increases, leading to a stronger interaction (see Table I).
This results in an increasingly suppressed dissociation, which
may be explained by the increased separation of the dressed
states leading to a decreased population exchange [19,31]. For
example, for r = 3 the approximate Rabi splitting is already
0.6 eV. For all values of r investigated here the final population
is always suppressed compared to the field-free case.

C. Squeezed-coherent states

We now discuss control via squeezed-coherent states. The
initial state of the cavity mode can then be described by
Eq. (18). Assuming that the displacement |α| and the squeez-
ing parameter r are kept constant we now have two phase
variables that can be used to control the final population: the
phase-space angle ϕ of the coherent state and the squeezing
phase θ . In Fig. 4 the final populations are shown in depen-
dence of θ and ϕ for a coherent state displacement corre-
sponding to |α| = 1 and two different squeezing parameters
(r = 1 and r = 2). Both control surfaces show clear local
minima and maxima in the final 
1 population. The control

surface in Fig. 4(a) for r = 1 varies from a final population
of 0.5 to 0.8, which is a larger variation than using only a
squeezed state [Fig. 3(b), green curve] or only a coherent
state [Fig. 3(a)]. Increasing the squeezing parameter to r =
2 in Fig. 4(b) results in a stronger suppression of the 
1

population and the final population now ranges from 0.3 to
0.6. Both investigated cases allow only for suppression of
the final population (compared to the field-free case, ≈0.84).
This trend may be explained by the trend that quantum light
is suppressing the dissociation with increasing intensity. This
is also consistent with the blue curve from Fig. 3(b) (r = 2).
The modulation depth (from global minima to global maxima)
is ≈0.28 in both cases. A noteworthy difference between
Figs. 4(a) and 4(b) is the difference in the two local maxima
at θ ≈ 0.5π and the local minima at θ ≈ 1.5π : for r = 1 they
differ by ≈0.1, while for r = 2 they are almost equal.

D. Discussion

We have investigated different quantum states of light
with respect to their capability of modifying the dissociation
behavior at the avoided crossing in LiF and compared it to
the control with a classical single-mode field. Given that the
frequency, the polarization of the field, and the magnitude of
the interaction are fixed, the only control parameter that the
classical light field provides is the carrier phase. The closest
resemblance to this scenario is a coherent state, which offers
the phase ϕ as a comparable parameter. However, even if we
fix the effective strength of the interaction term by keeping
χ

√
n + 1 constant, varying the photon number n leads to

different results. This effect can be attributed to the fact the
molecule can modify the photon mode. A classical description
corresponds to the coherent state with a large photon number,
such that the exchange of a few photons does not affect
the photonic wave packet. The pictorial representation of
the control principle in Fig. 2 is based on the idea that we
can control the shape of the wave packet in the photon dis-
placement mode, which in turn controls the magnitude of the
interaction, when the molecule reaches the avoided crossing.
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(a) (b)

FIG. 4. Final 
1 state populations calculated as a function of the ϕ initial phase and the θ initial squeezing phase, using squeezed-coherent
initial states. The applied parameters are |α| = 1, r = 1 (a) and |α| = 1, r = 2 (b). In both panels the coupling strength and the transition
frequency are χ = 0.01 and ωc = 0.037 eV, respectively.

The investigated states, namely the coherent states and the
vacuum squeezed states, are characterized by a sinusoidal
time evolution of the photon displacement and a sinusoidal
time varying the width of the photonic wave packet. This
behavior is retrieved in the modulation of the 
1 population
for the coherent state phase and the squeezing phase. The
analogy in the classical picture is given by the instantaneous
value of the electric field when the molecule reaches the
avoided crossing. In the quantum description of light there is
now more than one parameter to steer this effect. Comparing
the final populations of the squeezed states [r = 2, Fig. 3(b)]
and the coherent states for a similar photon number [〈n〉,
Fig. 3(a)], one finds a similar variation in the 
1 population
of ≈0.2. The squeezed-coherent state shows a higher con-
trollability with a difference in the 
1 population of ≈0.28.
Comparing this feature to Fig. 3, we see that it allows for a
degree of control over the variation in final population in 
1

higher than that of either the squeezed vacuum or the coherent
state alone. However, classical light and coherent states are
found to allow for suppression or enhancement of the 
1

population, while for squeezed vacuum states and squeezed
coherent states only a suppression of the 
1 population is
observed.

IV. CONCLUSIONS AND OUTLOOK

We could show that quantum light in a cavity may be
used to control nonadiabatic dynamics in LiF. The squeezed
state phase and/or the coherent states can be used to alter
the dissociation rate via the 
1 state. The presented control
scheme relies on a fixed phase between an external pump-
pulse, triggering the nuclear dynamics, and the initial state
of the photon mode. How the initial state of the cavity could
be prepared in an experiment is an open question. For the
generation of squeezed-coherent states nonlinear optical pro-
cesses such as optical parametric oscillators [55] or parametric
down-conversion [56] may be used. The externally generated,

nonclassical light then needs to be transferred to the cavity
mode containing the molecule.

Future investigations should involve a multimode descrip-
tion. This will allow for a comparison with classical-shaped
laser pulses. The relative phases between the field modes
can be expected to become important, extending the control
scheme significantly. A single light mode can only use the
carrier of the light wave to modulate the interaction strength
in the time domain. However, a multimode scheme would
recover the behavior of laser pulses, which are essentially
multimode classical light fields [43]. This allows for the
control of time scales much smaller than the oscillation period
of the carrier frequency.

Moreover, one may envision to extend the presented prin-
ciple to arbitrary quantum light states. Optimal control theory
would then optimize an initial quantum state of the cavity
modes rather than the classical phase-amplitude shape of a
light field. Moreover, an interesting field of study may be
the application of the control scheme to collectively coupled
ensembles [22,57] of molecules. The collective enhancement
may be controlled by means of the quantum state of the cavity
mode.
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APPENDIX: OPERATORS IN PHOTON
DISPLACEMENT COORDINATES

The annihilation operator for a single mode is

â =
√

ωc

2h̄

(
x̂ + i

ωc
p̂

)
. (A1)
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From that we can write the number operator in photon dis-
placement coordinates:

n̂ = â†â = 1

2h̄

(
ωcx̂2 + p̂2

ωc
− h̄

)
, (A2)

which corresponds to Ĥc/h̄ωc − 0.5. The expectation value
of the photon number operator is thus directly related to the
energy expectation value of the mode:

〈n〉 = 〈Hc〉
h̄ωc

− 1

2
. (A3)

For the electric field we use the definition of the field
operator:

Êc = εc√
2

(â + â†), (A4)

which yields

Êc =
√

ωc

h̄
εcx̂. (A5)
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