36 research outputs found

    Crowding effect on helix-coil transition: beyond entropic stabilization

    Full text link
    We report circular dichroism measurements on the helix-coil transition of poly(L-glutamic acid) in solution with polyethylene glycol (PEG) as a crowding agent. Using small angle neutron scattering, PEG solutions have been characterized and found to be well described by the picture of a transient network of mesh size ξ\xi, usual for semi-diluted chains in good solvent. We show that the increase of PEG concentration stabilizes the helices and increases the transition temperature. But more unexpectedly we also notice that the increase of crowding agent concentration reduces the mean helix extent at the transition, or in other words reduces its cooperative feature. This result cannot be accounted for by an entropic stabilization mechanism. Comparing the mean length of helices at the transition and the mesh size of the PEG network, our results strongly suggest two regimes: helices shorter or longer than the mesh size

    Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation.

    Get PDF
    The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe(3+)-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world.This is the author's accepted manuscript. The final version is available from PNAS at http://www.pnas.org/content/111/50/17743.long

    Mucin Thin Layers : a Model for Mucus-Covered Tissues

    Get PDF
    The fate of macromolecules of biological or pharmacological interest that enter the mucus barrier is a current field of investigation. Studies of the interaction between the main constituent of mucus, mucins, and molecules involved in topical transmucoidal drug or gene delivery is a prerequisite for nanomedicine design. We studied the interaction of mucin with the bio-inspired arginine-derived amphoteric polymer D,L-ARGO7 by applying complementary techniques. Small angle X-ray scattering in bulk unveiled the formation of hundreds of nanometer-sized clusters, phase separated from the mucin mesh. Quartz microbalance with dissipation and neutron reflectometry measurements on thin mucin layers deposited on silica supports highlighted the occurrence of polymer interaction with mucin on the molecular scale. Rinsing procedures on both experimental set ups showed that interaction induces alteration of the deposited hydrogel. We succeeded in building up a new significant model for epithelial tissues covered by mucus, obtaining the deposition of a mucin layer 20 A\u30a thick on the top of a glycolipid enriched phospholipid single membrane, suitable to be investigated by neutron reflectometry. The model is applicable to unveil the cross structural details of mucus-covered epithelia in interaction with macromolecules within the A\u30a discreteness

    A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions

    No full text
    We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å−1. The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions

    Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles

    No full text
    Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine

    Descriptions de larves d'Aphodiidae afro-tropicaux [Col.]

    Get PDF
    Walter Philippe. Descriptions de larves d'Aphodiidae afro-tropicaux [Col.]. In: Bulletin de la Société entomologique de France, volume 87 (3-4), Mars-avril 1982. pp. 91-109

    Neutron reflectivity and computer simulation studies of self-assembled brushes formed by centrally adsorbed star polymers

    No full text
    The equilibrium properties of polymer brushes formed by starlike polymers with varying number of arms attached to a surface by their center were studied experimentally with neutron reflectrometry (NR). Polystyrene (PS) stars in a good solvent (toluene) were centrally adsorbed onto a quartz substrate via a zwitterionic anchor group. Increasing the number of arms resulted in significantly lower equilibrium adsorbance, while replacement experiments of a 3-armed star brush by linear chains revealed interesting equilibrium and kinetic features related to the special architecture of star polymers. These results are compared with scaling theoretical calculations and Monte Carlo simulations of centrally adsorbed star polymers that were performed under the bond fluctuation simulation scheme. Several features of the experimental results are reproduced in our simulation study. © 2008 American Chemical Society
    corecore